
www.manaraa.com

Computing (2017) 99:617–656
DOI 10.1007/s00607-016-0507-8

A survey on elasticity management in PaaS systems

Francesc D. Muñoz-Escoí1 · José M. Bernabéu-Aubán1

Received: 13 January 2016 / Accepted: 24 June 2016 / Published online: 29 June 2016
© Springer-Verlag Wien 2016

Abstract Elasticity is a goal of cloud computing. An elastic system should manage
in an autonomic way its resources, being adaptive to dynamic workloads, allocating
additional resources when workload is increased and deallocating resources when
workload decreases. PaaS providers should manage resources of customer applica-
tions with the aim of converting those applications into elastic services. This survey
identifies the requirements that such management imposes on a PaaS provider: auton-
omy, scalability, adaptivity, SLA awareness, composability and upgradeability. This
document delves into the variety of mechanisms that have been proposed to deal
with all those requirements. Although there are multiple approaches to address those
concerns, providers’ main goal is maximisation of profits. This compels providers to
look for balancing two opposed goals: maximising quality of service and minimising
costs. Because of this, there are still several aspects that deserve additional research
for finding optimal adaptability strategies. Those open issues are also discussed.

Keywords Cloud computing · Scalability · Adaptability · Elasticity · Service level
agreement · PaaS ·Workload prediction · Reactive management

Mathematics Subject Classification 68-00 · 68M14 · 68M15 · 68M20 · 68N01 ·
90B18 · 90B22 · 90B25

B Francesc D. Muñoz-Escoí
fmunyoz@iti.upv.es

José M. Bernabéu-Aubán
josep@iti.upv.es

1 Instituto Universitario Mixto Tecnológico de Informática, Universitat Politècnica de València,
46022 Valencia, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00607-016-0507-8&domain=pdf
http://orcid.org/0000-0002-7216-9249


www.manaraa.com

618 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

1 Introduction

Availability and scalability are two common requirements for distributed services. The
advent of cloud computing [7] has partially broken the existing limits on scalability.
Infrastructure as a service (IaaS) providers may supply a large infrastructure for
distributed application deployment. For most applications, this is almost equivalent
to an unlimited source of resources. So, infrastructure consumers should minimise
resource usage when the workload being managed by their applications is processed.
This introduces the need for a management of elasticity.

Elasticity management is not trivial. Ideally, that management should be done by
specialised companies: the platform as a service (PaaS) providers. The PaaS layer is
placed on top of an IaaS layer in a regular cloud computing architecture. According
to the NIST definitions [70], PaaS is a service model where “the capability pro-
vided to the consumer is to deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages, libraries, services, and
tools supported by the provider. The consumer does not manage or control the under-
lying cloud infrastructure including network, servers, operating systems, or storage,
but has control over the deployed applications and possibly configuration settings for
the application-hosting environment.” That definition demands that PaaS customers
deal with some general “configuration settings for the application-hosting environ-
ment” but adaptability management is a responsibility of PaaS providers. Since every
service should be elastic [29,43], this means that PaaS providers should deal with the
mechanisms that automate service scalability and adaptability.

However, the level of automation needed to approach a cost-optimal service
exploitation1 is still challenging because of the many aspects that should be consid-
ered. To begin with, scalability decisions must match what has been stated in service
level agreements (SLA). Thismeans that those decisions should be taken as soon as the
workload or the service performance starts to vary, which strongly suggests the need
to include some workload prediction mechanisms. However, forecasting techniques
are not perfect. So, they should be complemented with other reactive mechanisms;
i.e., when the resulting service performance levels do not comply with what is being
specified in the SLA or lead to unnecessary overprovisioning costs, service providers
should react. Those reactions may consist in adding service instances or migrating
those instances to better VMs, when the service capacity should be increased, or in
releasing instances when service capacity needs to be decreased.

Scalable distributed interactive services (e.g., social networks, electronic com-
merce,...) are concurrently used by many customers [8]. According to the SLAs,
service providers should ensure service continuity. Otherwise, service customers will
not rely on those providers. Unfortunately, both platform and service components need
to be eventually upgraded [96] in order to fix bugs, remove security vulnerabilities or
enhance their functionality, and these upgrades usually cause service disruptions. So,
this is another source of trouble for service providers.

1 Cost optimality implies that a minimal set of resources should be assigned for deploying that service,
reducing in this way the provision efforts and the customer payments.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 619

Our goal in this document is to provide a tutorial on the requirements to be consid-
ered and the current solutions to the challenges being present in elastic PaaS systems.
Note that in an IaaS system the resource being provided is a virtualised hardware,
and elasticity management in that scope refers to the ability to assign or deallocate
virtual machines to the customer, but the rules to be used to this end should be decided
by IaaS customers. In a PaaS system, on the other hand, the provider receives all
application components and a deployment manifest and that provider should manage
in a transparent way all the elasticity-related decisions for complying with a set of
high-level application goals (that should be adequately stated in the SLA). Thus, the
responsibility for decision taking is placed at the PaaS layer and should be dealt with
in a transparent way to the PaaS customer. That level of transparency and automation
is still an ideal target, but such target might be reached with some improvements on
the mechanisms described in the following sections.

In order to select the papers to be discussed in the following sections, a bibliographic
searcher was used (concretely, Google Scholar). Its results were filtered requiring at
least 20 citations per selected paper and applying a short review of each candidate
paper in order to check whether it might be used in a PaaS service model. This first
stagewas followed by both a forward and a backward trace of citations among themost
relevant papers returned in those searches in order to findmechanisms for dealing with
each one of the identified elasticity requirements. The papers collected in this second
stage were filtered again: they do not need a high citation count, but they should be
either recent Ph.D. theses or publications in relevant journals (i.e., indexed in Thomson
Reuters Journal Citation Reports) or conferences (e.g., indexed in the ranking from
the Computing Research & Education Association of Australia2 or in the Thomson
Reuters Conference Proceedings Citation Index).

As a result, this paper will not present an exhaustive survey of PaaS systems and
their characteristics (indeed, some surveys of that latter kind already exist, as we will
see in Sect. 2). Instead, it lists and describes the different techniques that may comply
with those requirements.

The rest of this paper is structured as follows. Section 2 provides a set of basic
definitions and describes some related work. Section 3 describes the provider require-
ments found in the PaaS service model. Section 4 explains the mechanisms being used
in order to deal with those requirements. Section 5 discusses pending problems in this
area. Finally, Sect. 6 concludes this document.

2 Background and related work

As it has been outlined in the introduction, cloud service models usually define a
layered architecture that was first suggested by Vaquero González et al. [112]. It
consists, from top to bottom, of the following layers:

– Software as a service (SaaS) In this layer distributed applications are offered as a
service to a large set of potential users.

2 That ranking is available at http://www.core.edu.au/conference-portal.

123

http://www.core.edu.au/conference-portal


www.manaraa.com

620 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

– Platform as a service (PaaS) In this layer a development platform is provided to
the customers and application deployment and elasticity management tasks are
automated by the provider.

– Infrastructure as a service(IaaS) In this layer a set of virtualisedhardware resources
(i.e., those needed to provision processing, storage, networks, ...) is provided to
the customers.

Complete definitions for each servicemodelwere proposed by theNational Institute
of Standards and Technology (NIST), and they may be found in [70]. Its PaaS service
model definition has been already quoted in Sect. 1.

In this papermultiple concepts related to services and service-related roles are used.
In order to avoid ambiguity, the following definitions should be considered:

– Distributed application Set of distributed programmes that needs to be deployed in
order to provide a service to a set of users. Each programme of that set implements
a component of the application.

– Distributed service The service provided by a distributed application once it has
been deployed in a given infrastructure and its elasticity is correctly managed.
Since the goal of this survey is to identify the research challenges being generated
by some elasticity requirements in PaaS systems in order to describe some of
their solutions, we will assume that distributed services are stateful. This means
that servers maintain information on their clients [13, page 115]. Otherwise, with
stateless servers, some of the problems being describedmight be solved in an easier
way. For instance, software upgrading (Sect. 4.6) does not need any transformation
stage [41] in the stateless case.

– IaaS provider (IP) The company that maintains a set of data centres that may be
used by external customers following an IaaS service model.

– PaaS provider (PP) The company that manages the deployment and elasticity of
distributed applications on top of a given scalable infrastructure. A PP, given the
layered architecture described above, also behaves as an IaaS customer.

– SaaS provider (SP) The company thatmanages the provision of distributed services
to their final users. A SP, given the layered architecture described above, also
behaves as a PaaS customer.

– Service user (SU) The final user of the distributed services. A SU also behaves as
a SaaS customer.

The main goal of our paper is to identify the basic requirements for achieving
elasticity at the PaaS layer, describing the main mechanisms being needed to this end.
Some previous surveys on elasticity in the cloud computing field have been published,
although they are not focused on elasticity requirements. Let us briefly summarise
their contributions in a chronological order.

Calcavecchia et al. [18] provide a concise taxonomy of auto-scaling approaches.
Its classification considers four axes: (1) contribution focus (customer-centric or
provider-centric), (2) self-management type (exogenous or endogenous), (3) auto-
nomicmechanisms (goal, action, utility or heuristic), and (4) provisioningmechanisms
(replication, resizing or migration). Despite its short length, the main contributions
of the relevant papers at that time are correctly summarised, providing a good first
introduction to this research area.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 621

Galante and De Bona [33] present a global study on cloud elasticity centred on
four different axes: scope (infrastructure vs. platform), policy (manual, automatic pre-
dictive or automatic reactive), purpose (performance, infrastructure capacity, cost or
power consumption) and method (replication, resizing or migration). That classifica-
tion allows a rapid understanding of themechanisms being used formanaging elasticity
and of the challenges that exist in this field. Unfortunately, due to space constraints,
that paper cannot enter into detail in its descriptions.

Najjar et al. [80] provide a more extended survey on cloud elasticity. Its first
contribution is its deep analysis of elasticity in the PaaS service model, although
infrastructure-related approaches are also described. A second contribution is its con-
sideration of multiple kinds of SLOs. Besides regular QoS SLOs, Najjar et al. also
consider quality of experience (QoE) and quality of business (QoBiz) goals.

Coutinho et al. [24] centre their attention in evaluating themetrics to be collected by
the monitoring subsystem. It studies all service models: IaaS, PaaS and SaaS. Besides,
that survey startswith a description of the literature reviewprocedure thatwas followed
by its authors, presenting some statistics about the journals, conferences, benchmarks
and infrastructure providers (among other aspects) found in that literature review.
Because of its extensive discussion on metrics and review procedure, other important
aspects (mainly scalability and adaptability mechanisms) have not been thoroughly
discussed in that paper.

Naskos et al. [81] present the most elaborated taxonomy on cloud elasticity man-
agement. In this case, six different axes are identified in a first classification level, and
they are later refined in a second level. The resulting classification is complete, the set
of considered references is large, and each system being presented is carefully char-
acterised. Additionally, it also analyses the case of federations of cloud providers, that
is an interesting topic further discussed in other specific surveys [40,111]. However,
due to space constraints, that paper cannot describe in detail the mechanisms being
needed for elasticity management.

Finally, Galante et al. [34] have published in 2016 the most recent survey on cloud
elasticity we are aware of. It discusses elasticity in the management of scientific appli-
cations [16,17]; i.e., high performance computing (HPC) applications that follow a
parallel programming paradigm. In general, public cloud providers (at least at the
SaaS and PaaS layers) have assumed that users are interested in interactive web ser-
vice applications [49]. Scientific applications do not match that pattern; indeed, they
commonly follow a batch processing model. A user provides an input file (or a set of
input files) that should be processed using specific algorithms in order to find a result,
but no client-server interaction is needed in the interim. This poses specific challenges
[49] that are discussed in [34], complementing in this way what was presented by
Galante and De Bona in [33].

3 Elasticity requirements

Quoting Nikolas Herbst’s definition [43], elasticity in cloud computing is “the degree
to which a system is able to adapt to workload changes by provisioning and deprovi-
sioning resources in an autonomic manner, such that at each point in time the available

123



www.manaraa.com

622 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

resources match the current demand as closely as possible.” Such definition states that
elasticity combines two complementary dimensions: scalability and adaptability. This
means that elastic services should be able to collect new computing resources when
their workload is increased, but also to discard any exceeding resources when that
workload decreases. Additionally, this resource management should be autonomous;
i.e., driven by the system itself.

Therefore, some initial requirements may be directly derived from that definition:

1. Autonomy An autonomous manager [45,48,53] should exist, with sensors and
effectors on its managed elements; i.e., on the server instances. This manager
should be able to monitor the server instances and their environment, analyse
the collected metrics, plan its adapting actions and execute them, considering an
appropriate knowledge base. This conforms the MAPE-K [48] reference control
model that could be taken as a basis for building an autonomic platform.

2. Scalability Services should be able to scale. To this end, when the service work-
load increases, the number of server instances should be increased (horizontal
scalability) or each instance should be upgraded (vertical scalability).

3. Adaptability Traditionally, scalability has been centred in using appropriate tech-
niques for managing larger sets of resources in order to achieve a (close to) linear
increase in service throughput [83]. Decreasing workloads were not considered
a problem in those first systems, since their population of customers followed an
increasing trend.
However, nowadays, the set of resources being used should be adapted as soon
as possible to the current demands, avoiding overcommitment. Resource overpro-
visioning incurs in excessive costs, since those resources must be paid. Resource
underprovisioning is equally bad, and, depending on the SLA, potentially worse,
since the incoming workload will overwhelm the existing servers ruining the QoS
compromised in the SLA, with explicit economic consequences, or implicit pun-
ishment by customers abandoning the service.

Besides this, according to Dustdar et al. [29] quality of service (QoS) and self-
identifying resources (that help in service composition) are two important aspects in
every elastic cloud system. Quality of Service (QoS) requirements are stated in SLAs.
QoS and composability have special implications in a PaaS service model. Therefore,
the set of requirements to be considered might be extended with:

4. SLA-awareness SPs develop and integrate the software of their service, and expect
that PPs automate their management. This automation must be based on some
service level objectives (SLOs) the SaaS must attain, likely captured by the SaaS
SLA with its own customers. To make this work, a SaaS should provide their
deployed services with a means of expressing their SLOs, which can then be
properly interpreted by the PaaS, and drive the PaaS elasticity actions. The actual
SLA between the PaaS and the SaaS must, in turn, cover the degree to which the
PaaS guarantees that the SaaS is achieving its SLOs.
Multiple SLOs may be considered in PaaS systems. There is an agreement on
considering service availability as the most important SLO to be respected [3].

5. Composability A distributed service may consist of multiple components. Those
components are related by a flow of data and processing [117]. The scaling unit

123



www.manaraa.com

A survey on elasticity management in PaaS systems 623

of action is the component. Thus, if only one component has become the current
performance bottleneck, we might scale out only that component in a first stage.
In spite of this, we should still consider that those components are inter-related,
carefully analysing which are their dependencies [117].

6. Minimal service disruption in software upgradesRequirements 1, 2 and 3 are basic
for achieving elasticity. Requirement 2 (scalability) does not make sense without
service continuity. A scalable service increases its set of managed resources in
order to deal with increasing loads because its main goal is to answer every client
request. When that is not possible, the service becomes unavailable, at least for
those users that do not get their intended answers. Therefore, service continuity
(i.e., availability) is a pre-condition for scalability [37,82].
Software systems are not static. Clearly, software defects will drive change. Addi-
tionally, market pressures and customer demands for new functionality also drive
change, forcing SPs to come up with newer versions for their software. A careful
software upgrading procedure should be designed [63] considering the SLA, and
that SLA also demands high availability [82]. In spite of this, several IPs and PPs
explicitly exclude their periodical maintenance windows from their availability
computations, but this may be confusing for their customers. Indeed, customers
may consider that those unavailability intervals are an inconvenience. Therefore,
the length of those planned maintenance windows should be minimal.
IPs deal with planned upgrades notifying their maintenance intervals to their cus-
tomers. With this, customers may react appropriately to those outages.
Since scalabilitymanagement is a requirement for PPs, PPs are aware of the current
degree of replication for each deployed customer application. With this informa-
tion, and assuming that the upgrade may be done in stages, handling a different set
of replicas in each stage, a PP might deal with some kinds of software upgrades
(those without state transformations) in a transparent way to its customers.

4 Elasticity mechanisms

Let us discuss in the following subsections which are the mainmechanisms being used
nowadays in order to deal with the requirements presented in Sect. 3.

4.1 Autonomy

A PaaS system should be a piece of autonomic software [46,53]. In the IBM blueprint
for autonomic computing [48] a software system is considered autonomic when it is
able to self-manage with a minimum of human interference. In that case, its software
elements should be self-configuring (i.e., adaptive), self-healing (i.e., able to detect,
diagnose and react to disruptions), self-optimising and self-protecting. To this end, a
set of autonomic software elements should be controlled by an autonomic manager.
This defines a control loop with four stages:

1. Monitor Some information is collected from the sensors set on each managed
element. These data are also aggregated andfiltered in order to build the appropriate

123



www.manaraa.com

624 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

reports. The data being considered consists of multiple metrics and descriptions
of the current resource topology.

2. Analyse This stage correlates the data obtained in the previous stage and consid-
ers some behavioural models (e.g., time-series forecasting, queueing networks...)
allowing the autonomic manager to learn from the environment and helping to
predict future situations for the managed elements.

3. Plan Considering the information provided by those models, the planning stage
decides the actions to be performed in order to reach the system goals, according
to the existing policies.

4. Execute Finally, the execution stage applies those actions to the managed elements
through the corresponding effectors.

Each stage is endlessly applied and its output is considered by the next one in that
loop. To this end, the stages access a shared knowledge basewhere the global policies
can be found and the information being generated in each stage is stored.

This general picture of autonomic computing can be easily tailored for the cloud
computing systems that follow a PaaS service model. Thus, the general business poli-
cies being discussed in [48] become now a combination of:

– A general economic goal: to minimise the cost of the infrastructure required for
supporting all customer software to be deployed on the platform.

– A specific set of rules, depending on each customer application to be deployed:
the SLA that governs the QoS requirements for each of those applications.

When PaaS elasticity is considered, autonomy refers mainly to the ability of
automatically adapting the service to its current workload (i.e., self-configuring and
self-optimising) and to its agreed QoS levels. Those QoS levels imply self-healing and
self-protecting, since they consider service availability (that implies both aspects and
is supported through component replication, to be described in the scope of scalability
management). This autonomy is provided by the internal platform elements that are
managing the application components installed by the SPs.

Multiple academic proposals (e.g., [19,75,90,97,114]) follow an architecture that
complies with the recommendations from the IBM blueprint. As such, these proposals
usually have a monitoring component that collects relevant metrics from the deployed
services, an analyser component that uses some kind of performance model in order to
compute other derived metrics, a planning component that compares these collected
values with the intended target ones (as ruled by the existing SLAs) and decides the
appropriate (scaling) actions to be taken in order to correctly adapt those customer’s
deployed components and, finally, an executor component that applies those actions.

Thus, Kingfisher (Sharma et al. [97]) is able to apply the MAPE-K control model
onto hybrid (i.e., those that combine a public and a private cloud) deployments. It uses
a modified version of the OpenNebula [78] toolkit to implement its cloudmanagement
mechanisms. Those mechanisms may be deployed onto Xen-based private clouds or
onto the Amazon EC2 public cloud. It consists of four main components:

1. Monitoring engine (ME) It is based on Ganglia [67] or on the monitoring mecha-
nisms provided by the IaaS.

2. Workload forecaster (WF) It should implement any workload prediction mecha-
nism. In that paper, it is emulated by a perfect forecaster.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 625

3. Capacity planner (CP) It is the core of theKingfisher architecture. It implements an
integer linear programming (ILP) algorithm in order to adapt the system capacity.

4. Orchestration engine (OE) Once a configuration has been computed, OE instan-
tiates it using the transition plan. OE uses the interfaces exposed by the cloud
management platform to resize VMs, start up new instances, or migrate VMs. OE
merely specifies the server type for each configuration step, and leaves the prob-
lem of placement of these VMs onto physical servers to the OpenNebula cloud
manager.

Those four components are correlated with the stages of the MAPE-K control model.
A second academic proposal is presented by Casalicchio and Silvestri [19]. In its

scope, the fourMAPE-K stagesmay be implemented using the following components:
the monitor stage encompasses a performance monitor and a workload monitor; the
analysis stage consists in a SLA analyser; the plan stage has a provisioning manager;
finally, the execute stage consists of a load balancer and a VM allocator. Its Sect. 4
discusses four different ways for distributing all those components between IPs and
PPs (the latter are called application service providers, ASP, in that paper):

1. Extreme ASP control The PP maintains all the presented components, while the
IP only manages a small monitoring agent that reports its information to the load
balancer, VM allocator and performance monitor managed by the PP.With this, all
the autonomy management is driven by the PP with a minimal assistance from the
IP. This option may make sense when the PP follows a private cloud deployment
model [70] for its infrastructure.

2. Full ASP control. In this second alternative, the VM allocator is moved from the
PP to the IP. With this, the PP still drives all the autonomy management decisions
but the VMallocationmechanisms aremanaged by the IP.With this, PPs outsource
VM management, relying on external data centres. However, in this architecture
the PP is still responsible for organising a scalable network infrastructure.

3. Partial ASP control In this third approach, the load balancing service and the per-
formance monitoring service are both moved onto the IP responsibility. With this,
the PP is responsible of the analyse and plan stages (i.e., adaptability decisions),
while the IP deals with themonitor and execute ones (i.e., scalabilitymechanisms).
This seems to be the best distribution, since it corresponds in a natural way to the
definitions of the PaaS and IaaS service models [70,112].

4. LimitedASPcontrol In this last variant, the IP is able tomanage itself all theMAPE-
K stages. To this end, the IP provides complete auto-scaling functionalities. In this
case, the PP is only centred in setting the appropriate auto-scaling rules that will
be driven by the IP.

Mohamed [75] proposes the usage of wrapper classes in order to add autonomy and
elasticity management on previously developed services that were not autonomic- or
elastic-aware. To this end, these wrappers provide endpoints for monitoring operations
and different mechanisms for easily implementing scale-in and scale-out actions.With
this, both the monitor and execute stages can be supported in those deployed services.
On the other hand, the analysis and plan stages should be managed by the platform,
using specific components.

123



www.manaraa.com

626 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

The interested reader may refer to Huebscher and McCann [46] in order to delve
deeper in the autonomic computing research field, in general, and to Singh and
Chana [101] for autonomic cloud computing, in particular.

4.2 Scalability

In order to have an elastic system, the software services it provides must be scalable.
This means that when the incoming workload is increased, the capacity of the serving
nodes should be also enlarged. We assume that the PP has access to an underlying
computing infrastructure (in some cases, rented to external IPs) and that it may use as
many computing nodes as needed.

There are different scalability mechanisms [33]:

– Replication (i.e., horizontal scalability) Horizontal scalability consists in using
additional computing nodes for executing server instances when such serving
capacity needs to be increased. This may be implemented adding new virtual
machines (VMs) to the current set, deploying there new replicas of the required
service components.
In order to increase scalability and performance, inter-replica consistency should
be relaxed since there is a trade-off between performance and consistency in repli-
cated services [8]. To this end, eventual consistency [28,52,116] was proposed.
This is also a consequence of the CAP theorem [32,38] since highly scalable
interactive services may be deployed in multiple data centres [8,111] (in order to
maintain server replicas close to their intended users, reducing interaction latency)
and network partitions may arise in that case. The CAP theorem states that it is
impossible that a distributed system ensures strong consistency, availability and
network partition tolerance simultaneously for its deployed services. Because of
this, consistency is usually relaxed and optimistic replication protocols may be
used in that case. An excellent tutorial and survey about optimistic replication
protocols and eventual consistency has been written by Saito and Shapiro [95].
Another consistency management is to delegate state sharing. If there is a need
of sharing data, such data may be managed by a specialised external component.
An example is a scalable datastore (e.g., Google Bigtable [21], Apache Cassandra
[58], Microsoft Azure SQL Database,...), that transparently uses replication and
sharding [108] in order to ensure a fast update management. A variant in this man-
agement guarantees causal consistency complemented with eventual convergence
[4,9,98,121]. With this, these datastores are providing the best consistency that
can be ensured in a partitionable environment [87] with optimal performance. To
this end, transaction updates can be forwarded among replicas using lazy causal
propagation [26].

– Resizing (i.e., vertical scalability) Vertical scalability consists in improving the
capacity of the server node.Away for implementing vertical scalability is hardware
upgrading. This is supported when VMs are used and those VMs get additional
resources from their hosting physical computers; e.g., a larger share of CPU time
[71], a larger amount of physical memory, a higher bandwidth in their access to
the network, etc. Therefore, the basic mechanism consists in VM resizing and this
is a method for achieving IaaS-level elasticity.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 627

There have been several IaaS-related proposals for managing VM resizing [25,
39,99]. In most cases, resizing management consists in using a VM manager
that interacts with the hypervisor software in order to dynamically change the
hardware resources currently assigned to each deployed VM. That VM manager
should be complemented with a controller that decides how those resources should
be allotted. The configuration of the controller is made by the PP while both VM
manager and controller are held by the IP.
For instance, in Elastic VM [25] its VM manager contains these elements:

– Resource monitor: It dynamically measures the resources (i.e., CPU, mem-
ory,...) consumption and reports their values to the QoS controller. To this end,
it depends on the measuring utilities provided by the hypervisor.

– CPU scheduler. It may dynamically change the CPU allocation to each VM
according to the QoS controller decisions. Again, it depends on the hypervisor
for setting those CPU shares.

– Memory manager. It allocates the memory being needed by each VM.
– Performancemonitor: It notifies the current values for the relevant SLOmetrics
to the QoS controller.

– Application manager: It manages the commands for controlling the life cycle
of the deployed VMs.

On the other hand, its QoS controller consists of three elements: (1) a CPU con-
troller, (2) a memory controller, and (3) an application controller. Each one decides
respectively the current share of CPU, share of memory and amount of running
VMs. These controllers consider the information being provided by the resource
and performance monitors in order to give commands to the CPU scheduler, mem-
ory manager and application manager for optimising resource usage and SLO
compliance. In this way, each deployed VM may be dynamically resized consid-
ering both its own SLOs, performance and workload, and the current status of their
hosting computer.
Resizing demands a fine control of local hardware resources in each hosting node.
Besides, local controllers must also exist in each host, balancing and redistributing
the local resources among the locally deployed VMs. Because of this complex
management, many IPs do not allow VM resizing at run-time. Note that VM
resizing requires that either the host computer has free resources at resizing time
or the other guest VMs should also adapt their provisioned set of resources to
accommodate such resizing. Instead of that dynamic resizing, most IPs facilitate a
static set of VM types and the PP is compelled to select which kind of VM should
be used in each image allocation. Therefore, in those cases, vertical scaling should
be implemented through VM migration.

– Migration Migration consists in moving the server instances from their current
VM to another one in a different host computer [69]. Depending on the size of the
instance image, the network bandwidth and the location of the hosts, migration
may need several seconds to be concluded. Note that a migration is a three-step
procedure: (1) the current instance image should be stopped, (2) its image should be
transferred to the new container, and (3) its activity should be restarted there. If the
instance IDandnetwork address should be preserved, some routing reconfiguration
will be needed in this last step.

123



www.manaraa.com

628 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

Migration solutions have been considered inmultiple research papers.A fewexam-
ples are described in the sequel.
Sharma et al. [97] describe the Kingfisher system where all scaling mechanisms
(replication, resizing and migration) can be combined in order to improve service
performance. Kingfisher is able to federate private and public infrastructures. VM
resizing may be implemented in private infrastructures. OpenNebula is used in
that case. On the other hand, VM migration is the mechanism needed in public
IaaSes and also when VMs should be moved between different IPs. The goal in
[97] is to propose an efficient resource provisioning algorithm. The best results are
obtained combining multiple algorithms. The first one is centred in minimising
the amount and cost of infrastructure resources. The second one minimises the
provisioning latency. A third algorithm, based on integer linear programming, is
needed for combining all previous algorithms.
Knauth and Fetzer [55] evaluate the costs of live VMmigration procedures. Their
results show that even for small VMs (512 MBs of RAM and 8 VPUs) being
supported by medium hosts (8 GBs of RAM and 2 CPUs with 4 cores per CPU)
and a 1 Gbps network, the time needed for migrating a live VM between two
different hosts ranges from 8 to 18 s depending on the load. This leads to a service
disruption of at least 10 s in the best case. Despite these “long” intervals, those
migrations were able to noticeably improve service performance when the target
host provides a better VM to the migrated instance. In their experiments, average
response time was reduced from 1 s in the original (overloaded) host to 250 ms in
the target (free) host.
Later [56], the same authors propose amechanism for stopping and restartingVMs.
Such solution is not a migration mechanism but it shares many characteristics with
livemigration.VMrestarting actions last less than a second in this case. To this end,
VM restarting is implemented on demand. The central part of the image is loaded
in RAM immediately but the remaining parts are loaded on demand, leveraging
the virtual memory management provided by the host.
CloudScale [99] uses aworkload predictor in order to adjust the resources assigned
to each VM. So, it is able to implement vertical scalability using the VM resizing
technique described above. However, when the forecast workload in a given host
exceeds its capacity, VM migration is also used for complying with the SLOs. In
order to decidewhich host should receive thosemigratedVMs, the “scaling conflict
handler” component of the CloudScale system analyses the forecast workload in
each host and locates the best target for each migration.
Casalicchio et al. [20] analyse the negative impact that VMmigration may have on
an IP when VM allocations have exhausted the available resources and VMs need
to be migrated to external IPs. To this end, an optimisation problem is formalised
and different algorithms based on heuristics are proposed. An additional constraint
is service availability that should be maintained above a given threshold. The best
solution is provided by their NOPT algorithm that follows the hill climbing local
search method.
Calatrava et al. [17] illustrate another use of migration that is not directly related to
scalability. Calatrava et al. propose a PaaS system for scientific computing able to
manage hybrid clouds. In public clouds, in order to minimise customer payments,

123



www.manaraa.com

A survey on elasticity management in PaaS systems 629

Amazon EC2 spot instances may be used. Spot VM instances have a variable
price that depends on the customers demands but is lower than that of regular
VMs. They are rented according to a customer bid. When a spot instance price
exceeds the bid, it is deallocated from its customer, but this only happens once the
current billing unit is completed (by default, 1 h). In this case, migration is used
for porting each application computing element from its current spot instance to
another once the original spot needs to be deallocated. With the checkpointing
and migration algorithms proposed in [17], the application execution costs are
minimised without endangering a good throughput.
Note that some migration mechanisms described in the previous paragraphs have
been defined in IaaS systems. Therefore, they implement the migration procedures
providing in this way a scaling option that may be used by their customers. PaaS
systems are such customers and they are able to use those mechanisms when
scaling actions must be applied.

4.3 Adaptability

We refer to adaptability as the possibility of adjusting the computing capacity of a
given service to the current workload. So, besides being scalable, an elastic service
should be adjustable to the workload being received at each moment.

Reinecke et al. [91] consider two different dimensions of “being adaptive”:

– Adaptability It refers to the potential for adapting a system. This means that system
components have been designed considering that they will need to be reconfigured
or restructured in some way. It is a static dimension.
Adaptability is not a synonym for elasticity but only one of its two dimensions.
An elastic system should be both scalable and adaptive, focusing that adaptability
on the means being needed for guaranteeing scalability and QoS.
Regular adaptability does not necessarily imply that the target of those reconfigu-
rations will be always scalability on size. For instance, Miedes and Muñoz-Escoí
[74] and Ruiz-Fuertes and Muñoz-Escoí [94] propose adaptable meta-protocols
that managemultiple multicast or replication protocols, respectively. The resulting
systems are adaptable since their users or administrators may select, when needed,
the most appropriate protocol for the current workload. However, none of those
possible reconfigurations has any immediate effect on the number of nodes.

– Adaptivity This goes a step further. Adaptivity is the system ability to adapt itself.
Besides being adaptable, an adaptive system is able to find out when such adapt-
ing actions should be applied. This means that an adaptable (i.e., reconfigurable)
system becomes adaptive when it is able to provide an autonomous management.
Since autonomy is one of the elasticity requirements (already described in
Sect. 4.1), elastic systems need to be adaptive. To this end, their architecture should
include monitoring, analysis, planning and execution subsystems that automate all
reconfiguration-related decisions.

There are two main approaches for achieving adaptivity: proactive and reactive. In
the proactive (or predictive) case, someworkload analysis ormodelling is done in order
to forecast the load levels in the near future. With this knowledge the actions needed

123



www.manaraa.com

630 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

to correctly adapt the service capacity to the current workload are taken beforehand.
Thus, QoS might be easily guaranteed when those predictions are accurate. On the
other hand, with a reactive approach, both the workload and the service behaviour
are thoroughly monitored and adequate thresholds are set on different metrics. When
those thresholds are reached some adapting actions are started.

Gambi et al. [35] analyse how to test the elasticity of cloud services. They find that
there are multiple adaptability and adaptivity dimensions in this scope. Computing
elasticity may be compared with mechanical elasticity and, in that case, the following
correspondences may be found: (1) a computing service is plastic if it can scale out
but it cannot scale in, (2) the impact factor measures the time needed for scaling out
or scaling in when workload changes arise, (3) the fatigue factor measures whether
the service is able to afford going over budget within an observation interval, (4) the
shear factor measures the tolerance to interferences from other services or to resource
contention (or exhaustion) in the underlying platform. Test cases and metrics should
be defined for evaluating all these aspects at testing time. Additionally, all those goals
should be considered when the service is being designed, developed and deployed,
improving in this way the adaptivity of the resulting service.

Let us discuss in the sequel some of the existing solutions in each type of adaptivity
approach.

4.3.1 Proactive mechanisms

Software performance prediction has become an interesting topic in the cloud com-
puting field in the last years. Software performance engineering (SPE) [103], one of
the existing performance prediction approaches, is a research area that has received
attention since the 80s [102]. SPE states that performance is one important goal of
reliable software products and that adequate performance can only be achieved when
such goal has been considered since the software design stages. The architecture of
a complex software application conditions its achievable performance. So, software
architects should take care in their designs about the modules that will compose the
application and about their dependences, building an accurate performance model and
evolving and refining it until its predicted performance is considered appropriate.

Balsamo et al. [10] surveyed the existing techniques in the performance mod-
elling and prediction field. At design time, software architects should take care on
the mapping between the software behavioural model and the performance model
being used in each technique. One of the existing problems is the gap between those
two models (behaviour vs. performance) that might generate inaccurate performance
prediction results. In order to fill this gap, further details should be considered in the
performance model, but those extensions may complicate the model excessively. No
clear solution exists for this issue. Those models should also identify potential perfor-
mance bottlenecks in the software architecture being analysed, leading to a redesign
when the stated performance goals become unattainable. Another desirable goal is
the automation of the performance model derivation from the software behavioural
model. Unfortunately, none of the proposals at that time reached such objective.

Many solutions surveyed in [10] were based on UML diagrams as their behavioural
model and on queuing networks as their performance model. Queuing networks show

123



www.manaraa.com

A survey on elasticity management in PaaS systems 631

the advantage of an adaptive abstraction level, since they may be used both for pre-
dicting the high-level performance of the overall architecture and also for studying
the performance of each one of its components; i.e., queuing networks are compound-
able. Its high-level view allows the identification of which components might become
performance bottlenecks.

Other software performance models were identified: process algebras, Petri nets,
generalised semi-Markov processes and simulation techniques. Process algebras and
simulation techniques deserve additional explanation since they had been used in
multiple proposals.

Generally, the approaches based on stochastic process algebras [44] use a single
model for representing both the behaviour and the performance of the system being
modelled; i.e., the process algebra has those two roles. This requires an additional
effort from the system architect or software designer since the expressiveness of such
tool is quite limited in the behavioural semantics; i.e., in order to specify the software
functionality. This may lead to problems in the development stage, needing a com-
plementary design using other tools. Besides that problem, algebras commonly derive
Markov chains that may lead to a state explosion when the predicted performance
results should be computed. So, this model does not scale appropriately and it can
only be used in small systems consisting of a few components, operations and steps
in order to get precise performance predictions.

Simulation approaches [6,27] take as their basis a set of UMLdiagrams and, using a
simulation framework, generate a performance simulator programme for that system.
This simulator-generation step demands additional information that can be provided
either with extended UML diagrams and/or notations [27] or with additional input
requested by the converter [6].

All those performance prediction techniques have been conceived for their usage in
the first stages of the software life cycle. They may be used in software services to be
deployed in a cloud platform. In that case, they help the architects of those applications;
i.e., SPs. On the other hand, PPs may use those approaches to predict the performance
of the platform components. However, PPs should consider an additional concern:
how to predict the performance of the software components being deployed on their
platforms. As it refers to this latter concern, the PP receives a set of components to
be deployed. Those components have already been designed and developed by other
people. That PP should find a tool for modelling the performance characteristics of
those components in order to decide howmany instances of each of them should be run
to obtain SLA-compliant performance levels. In the end, this might be a very different
problem that may be solved using the information provided for deploying services.

Some solutions being used in academic proposals are discussed hereafter.
To begin with, Bennani and Menascé [12] describe a system that uses analytical

queueing networks and mean value analysis (MVA) for assigning in the best way the
existing hardware resources to a set of customer applications. To this end, local and
global controllers are used. A local controller consists of: (i) a workload monitor that
collects the current workload level and stores it in a workload database; (ii) aworkload
forecaster reads such history ofworkload levels and predicts the forthcomingworkload
levels using some statistical techniques; (iii) a predictive model solver takes as its input
the results of the previous two modules and the current number of servers assigned to

123



www.manaraa.com

632 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

that application in order to predict its service performance; (iv) a performance monitor
reports the current performance levels to the next module; (v) finally, a utility function
evaluator compares the results of the predictive model solver and the performance
monitor in order to compute the current utility function value. Such value depends on
the SLA, since SLAviolationsmight imply economical penalties and SLA compliance
usually implies economical benefits.

Those per-application local controllers are complemented by a global controller
This global controller consists of three elements: (i) theglobal controller driver decides
when the other two components should be run (periodically by default, but also each
time the global utility function is changed); (ii) the global controller algorithm uses
a combinatorial search technique for predicting the performance to be achieved by
different server distributions among the existing applications; to this end, it uses the
local controllers (that receive as their input, the intended number of servers to be
analysed); (iii) finally, the global utility function evaluator summarises the information
provided by each local controller evaluator and reports it to the global controller
algorithm. When the global controller algorithm finds a server configuration able to
improve the current global utility function value, it starts a server redeployment.

This architecture mixes the two approaches previously commented. On one hand,
traditional queueing network models are used for predicting the performance of some
server configurations. On the other hand, workload predictors are used to comple-
ment such study. Finally, the results of that combination are expanded and multiple
server configurations are analysed in order to find the optimum one for the utility func-
tion. Besides this, a provider needs to evaluate all resources being used or demanded
by all customers. So, two controlling levels are needed: per-application and global.
Apparently, such proposal seems to be quite complete, and the paper also provides an
experimental evaluation that confirms the adequacy of that solution for dynamically
allocating HW resources to a set of applications that are deployed in a given data
centre. However, the workload being studied was generated by a simulator. In general,
proactive mechanisms still need to be evaluated in a production setting, with a real
workload. Depending on the applications and the environment, the workload being
supported may show variability trends that could be hard to forecast.

Casalicchio and Silvestri [19] compare five different adaptive strategies for server
allocation. Most of its presented adaptive mechanisms can be considered reactive, but
one of them bases its decisions on a request arrival rate predictor. Such predictor is
based on a simple statistical adjustment applied to the recent history of arrivals. The
experimental results show that in one of the configurations being studied, with such
a predictor the proposed system is able to minimise its economical costs (using the
lowest amount of hosts) providing also one of the best average response times.

The ASAP [51] subsystem combines five different basic predictors. Each predictor
tries to find out when a new VM will be requested or when an already used VM
will become unnecessary, using to this end the recent history of deployment requests.
Since five different predictors are used, their outputs are compared afterwards with
the real values and thus, ASAP may choose the best recent predictor at each time.
Once it has been chosen, future demands are computed using a regression model and
a correlation model on such predictor output. This strategy should provide good levels
of adaptability since the proactive subsystem implements five predictive approaches

123



www.manaraa.com

A survey on elasticity management in PaaS systems 633

and is able to compare their results and revise their accuracy afterwards. So, the
chosen mechanism would not be bad. However, nothing is said in the paper about the
computing efforts needed for dealing with all those predictive approaches at once.

In [10], Petri nets were identified as a valid tool for performance modelling, but
only used in a few systems. Mohamed [75] presents an example of this kind. His work
consists in providing a framework for adapting any existing distributed service for its
deployment on the cloud. To this end, component wrappers are used. Those wrappers
deal with the monitoring tasks. Using these monitored values as its input data, Petri
nets are able to model the overall performance of the involved components. Using
such model, the platform may set some performance thresholds for controlling the
scale-out or scale-in decisions. So, this is an example of a hybrid approach where a
performance model (initially predictive) is used for setting the performance thresholds
that will condition the reactive actions.

Roy et al. [93] propose a predictive performance model based onmean value analy-
sis (MVA), that is complementedwith aworkload forecaster basedon anautoregressive
moving average (ARMA)method. ARMA consists in assigning decreasing weights to
the previous arrival rates maintained in a history knowledge base. On the other hand,
MVA is used in this case in a response time analysis algorithm. Such algorithm starts
with a minimal assignment of machines for each involved server and it evaluates how
the overall response time evolves when new machines are added for deploying the
service. This evaluation concludes when the available machines are exhausted. All
computed values are later compared and the optimal ones are taken as those that will
drive the redeployment of services. The experimental results show that the combina-
tion of a performance model and a workload predictor provides optimal results for
managing an adaptive resource allocator.

Kingfisher [97] combines a workload analyser with a capacity planner that uses
three different resource management strategies. The first strategy is an infrastructure
cost-aware provisioning. Given the estimated peak workload λ1, λ2 . . . λk that must
be sustained at each component i , the goal is to compute which type of cloud server to
use and how many instances at each component so as to minimise infrastructure cost.
This provisioning algorithm involves two steps: (a) for each type of server, compute
the maximum request rate that it can service at a component, and (b) given these server
capacities, compute a least-cost combination of servers that has a capacity of at leastλi .
The second strategy is a transition cost-aware provisioning. The provisioning approach
must be able to estimate the latency of using different provisioning mechanisms,
such as replication, live migration, shutdown migration and resizing. Considering the
latency of such mechanisms, an optimal configuration is chosen. Finally, as its third
strategy, an integer linear programming algorithmmixes the results of the two previous
approaches.

DejaVu [114] is a Kingfisher’s workload analyser. Client requests are forwarded
by some proxies to a workload profiler. This profiler collects a set of low-level perfor-
mance and resource usage metrics, building a sufficiently large set of historical data.
With this, workload is clustered, identifying a set of workload classes and the amount
of provisioned resources being needed in each class for guaranteeing the SLOs. This is
the learning phase. Once in the production stage, workload is continuously monitored
in order to appropriately identify the current workload class. When such workload

123



www.manaraa.com

634 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

class changes, the resource allocation strategy is also changed. The resulting model
includes also an “interference”metric that includes the throughput interference caused
by other concurrent services deployed in the same platform. DejaVu is able to measure
such interference adapting its resource allocation appropriately.

The ADVISE [22] framework monitors multiple resource metrics, analysing their
historical information (i.e., profiling their behaviour) and considering multiple service
components or parts with their deployment information and flow dependencies. With
this, a complete picture of each service is taken and the prediction accuracy is highly
improved. Additionally, those predictions are compared afterwards with the really
obtained SLO values. In our opinion, this is the most appropriate strategy to adopt in
proactive approaches.

PREvent [62] also applied those comparisons to web service compositions, improv-
ing thus the prediction accuracy. PREvent based its forecasting mechanisms on
machine learning. It was one of the first proposals that complemented its predic-
tion management with adapting actions in order to comply with the SLA of composed
services.

4.3.2 Reactive mechanisms

A strictly reactive mechanism for adaptivity establishes a set of rules based on some
metric thresholds. Those rules define the actions to be taken when their associated
thresholds are reached or surpassed. Thresholds may be set based on heuristics or on a
performance model that has considered the current resource deployment. Such set of
rules is generally static, but the thresholds being used may be updated at run-time. The
input for those rules is the current set of measurements taken by the platform monitor-
ing subsystem. What distinguishes a reactive from a proactive adaptive mechanism is
that in the former no workload prediction is needed: only the current workload levels
(e.g., request arrival rate) or any other resource usage metrics (e.g., CPU utilisation,
size of the resource queues, ...) are considered. Many systems and proposals adhere
to these general principles, e.g. [75,76,84,90,100,120].

Let us explain an example that presents an evolution on these basic principles. As it
has been shown previously, Casalicchio and Silvestri [19] compare multiple adaptive
strategies. Only one of them is predictive. The other four are reactive. Those reactive
policies are based on two different metrics: CPU utilisation and response latency. On
each metric, two different strategies are considered: to use one or two thresholds for
each kind of decision. Let us describe two of those policies:

– UT-1al It uses a single threshold for each kind of decision. Thus, when the CPU
utilisation is greater than 62 %, a new server instance is added to the set and, when
the CPU utilisation is below 50 %, one instance is removed.

– UT-2al: A second threshold is added. When the CPU utilisation exceeds 70 % two
instances are added. When it is lower than 25 % two instances are deallocated.

The performance results from [19] show that its predictive policy is better than all
the proposed reactive ones when the metrics are evaluated every minute: it minimises
the resource costs and completes all benchmark tasks sooner than in any other strategy.
On the other hand, if metrics are evaluated every 5 min, then the reactive policy based

123



www.manaraa.com

A survey on elasticity management in PaaS systems 635

on the response latency metric with a single threshold has a minimal resource budget
(even lower than the predictive policy with a 1-min evaluation interval) and also with
the minimal completion time (26 % shorter than with the predictive 1-min policy),
although the reactive policy based on the CPU utilisation metric with two thresholds
is able to reach minimal values for the service response time. Therefore, there is no
clear winner among all the presented policies.

These results raise some questions about what is the best metric evaluation interval
for taking reactive actions. In that particular example, it seems that using a 5-min length
is better than using the shortest one. For instance, in case of a scaling out action for
a particular service S1, requesting the addition of a new server instance, the platform
components should deploy a new server image and might need some component re-
configuration. This needs some time and effort, and may require an additional interval
for workload stabilisation among all S1 instances. If the metrics being considered
are read again too early, they might provide counter-producing results, leading to
unnecessary scaling actions.

On the other hand, for scale-in actions we should also consider the length of the
billing interval. The common length is one hour. So, the PP will select the instance
that has almost consumed that 1-h interval, if any. When all the existing instances
have recently started its current billing interval, it is a nonsense to deallocate any of
them. In those cases, such instances are maintained, although one of them is tagged for
being deallocated afterwards. Such mark will be removed if the workload is increased
before stopping that selected instance.

Reactive mechanisms have an implicit issue: to select a particular resource usage
metric onwhich the SLOs directly depend. Cloud services have SLAs that specify their
performance objectives. For each objective, there might be multiple relevant resource
usagemetrics to consider. Reactive strategies select some of thosemetrics and set some
value thresholds on them. So, which is the minimal set of resource usage metrics to be
selected in order to adequately manage a deployed service? There is no clear answer
for this question. Yataghene et al. [120] propose the usage of performance models in
order to evaluate off-line the adequacy of different metrics for driving those reactive
strategies. This makes sense but such preliminary evaluation needs to be confirmed
later by a good behaviour of those schemes in the production stage.

4.4 SLA-awareness

Cloud providers following any service model (either SaaS, PaaS or IaaS) define
a special kind of adaptive system with autonomic behaviour, since the customer-
provider relation is driven by a service level agreement (SLA). In the original proposal
of autonomic computing [45] the main objective was the automation of the man-
agement tasks in a software control cycle, but SLAs were not considered at that
point.

In a cloud ecosystem, SLAs partially set the goals to be achieved by a provider
regarding service quality [101]. The other goals are related to its “quality of business”
(QoBiz) [80]; i.e., those other goals deal with reducing service provisioning costs in
order to maximise the business benefits.

123



www.manaraa.com

636 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

This introduces a first differential factor between general autonomic computing
systems and cloud computing. All non-functional quality aspects might be included in
a SLA and such SLA defines the quality-related objectives for those cloud providers.

Besides those service level objectives (SLO), a SLA should also specify which are
the penalties applied to a provider when those SLOs are not achieved, assuming the
client satisfies its part of the deal.

In the (ideal) PaaS service model, PPs should manage SLAs with a rich set of
objectives. Thus, SPs could select the most appropriate system for deploying and
managing their applications: that one with best relation between available resources,
application-level performance guarantees and renting costs.

Although several academical papers and projects assuming a PaaS model seem
to manage simultaneously multiple SLOs [19,59,63,72,73,75,93,97] (e.g., response
time for interactive services, throughput for batch services, service availability...) such
variety is lost in actual commercial systems. Most public providers only manage a few
SLOs, or even only one, themost important: service availability. So, one of the existing
challenges for PPs is to elastically manage the services being deployed by multiple
customers providing and guaranteeing a rich set of service level objectives in their
SLAs.

4.5 Composability

The services being deployed in a PaaS system should be automatically scaled. There
are multiple approaches to achieve this. In the first place, those services should not be
monolithic; if they were, the scaling decisions would be applied to a single element.
This would mean a lack of flexibility when we try to improve service performance,
since we could only add, remove, resize or migrate instances of that unique element.
Moreover, that elementwould be larger than the regular elements of amulti-component
service and this would have complicated any scaling actions. If the service is imple-
mented by multiple small components (or subservices), their scaling actions will be
faster and cheaper, since the amount of resources needed to manage them will be
also smaller. Those actions should consider also the data and functional dependencies
among their involved components [50].

Distributed services consist of multiple components that may be architected in
layers [92]. Such composability allows that the proactive performancemodels consider
the behaviour of each component. Thus, performance prediction models may be used
to identify those components that are close to their saturation point, applying then
the most appropriate scaling action on them. These components are replicated in the
regular case and define elements that are smaller than in monolithic designs. Being
replicated, software upgrades also become easier than in a non-replicated architecture,
since the new software versions (when their interfaces are preserved) could be applied
replica by replica without endangering service continuity [96].

Service composability has other implications, too. On one hand, some of the com-
ponents being needed in the implementation of a new service may have been already
developed by the same team, since carefully architected services may generate (or
need) reusable components. On the other hand, some of the components being needed
may be other services developed by other teams. In some cases, those components

123



www.manaraa.com

A survey on elasticity management in PaaS systems 637

might have been already deployed in other platforms or in other data centres. Then,
inter-service dependences should be declared in the deployment descriptors and the
SLAs of those external services should be analysed in order to establish the SLA of
such global service.

Careless composability might complicate the definition of the behavioural and
performance models being needed in the proactive adaptivity approaches summarised
in Sect. 4.3.1. So, distributed services to be deployed on a platform should be carefully
architected, stating the dependences among related components and taking care of
how such dependences have been considered in the SLAs. Indeed, Dustdar et al. [29]
already identified in 2011 the convenience of using self-describing components to build
elastic services. With them, it would be easy to state which are the inter-component
dependences. When those dependences have been documented and are known by the
scaling managers, any scaling action on a given component will also raise appropriate
complementary scaling actions in its dependant components. This is convenient, since
these joint actions shorten the adaptivity intervals of the encompassing service, as it
happens in the ADVISE framework [22].

Finally, Mohd Yusoh [77] considers inter-component dependencies in his evo-
lutionary algorithms for solving three service management problems: component
placement at deployment time, component migration and component replication.With
that explicit inter-component evaluation, those algorithms reach better solutions than
regular heuristic algorithms that assume that all service components are homogeneous,
according to the assessments shown in [77]. These proposals are intended for SPs in
[77], but they may be ported without problems to the PaaS layer, since deployment,
migration and replication management tasks are usually a responsibility of the PP.

4.6 Minimal service disruption in software upgrades

Software needs to be updated due to multiple causes that have been already outlined
in Sect. 3. This upgrading process has another constraint for cloud providers: they
should take care of the SLAs. A possible set of principles and mechanisms to consider
in the software upgrade stage taking into account SLAs has been described by Li in
[63]. Let us describe that proposal.

When some software components need to be upgraded respecting some SLA, the
upgrading system should take care of a sequence of objectives since each achieved
objective provides the mechanisms needed to solve the next one. That sequence is:

1. Global consistency If the element being upgraded interacts with other components
using some protocols, the updating actions should be applied without aborting any
started action. Besides this, if the protocol is modified, all involved parties should
be appropriately upgraded to maintain consistent interactions among them.

2. Service availability The overall service being upgraded should remain available in
the updating interval. Thismeans that it should be active and accepting requests. To
this end, the upgrade can only start in a safe system state. Kramer and Magee [57]
proved that quiescence is a sufficient condition for ensuring upgrade-safe system
states. Quiescence is achieved when all active threads complete their executions
and, if any new request arrives, it will be held in an input queue. With this, the
code to be upgraded is not executed by any thread at this safe state.

123



www.manaraa.com

638 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

3. Coexistence and service continuityCoexistence consists inmaintaining active both
software versions: the one being replaced and the new one that replaces it. Service
continuity implies that every service request will not be ever blocked. Coexistence
is a necessary condition for achieving service continuity.
In order to ensure service continuity a dynamic version management is suggested
in [63]. With this, every system component is tagged with a version number.
This is also applied to software connectors (i.e., communication channels with
their associated communication protocols) and to the global system. Once a new
component version is deployed, the global system version is increased. The old
component version is still maintained. New service requests will be tagged with
the new global system version. However, requests being serviced had been tagged
with the previous number. The version of each request message is checked in order
to decide which component may serve it. Once all old-numbered requests have
been completed, the old component version is deallocated.
Li assumes that the service being upgraded does not use replicated components.
This imposes several constraints in the next goal.

4. State transfer This is the most problematic aspect to be solved. The new software
version may use a different state and such state will need a translation from its
previous version to the new one. Besides this, even in case of maintaining both
versions in the same host, some kind of copy might be needed.
To solve this problem, Li [63] proposes the state-sharing principle: both software
versions are deployed on the same host and they share their state. A wrapper
provides the new interface and semantics to the new version.While the old version
still remains active, mutual exclusion is used for avoiding simultaneous accesses
from both component versions. Once all old-version ongoing requests have been
completed, mutual exclusion is disabled. No actual state transfer is needed, since
the state locations need not change in this kind of upgrade.
More evolved solutions are described byAjmani et al. [2] where simulation objects
behave as wrappers in the server domain. An underlying upgrading layer (UL)
provides support for all software upgrading mechanisms. That layer embeds a
simulation object per each software version being supported, although the current
version does not need any wrapper and uses a plain server proxy. In this way, the
server components being used at each time do not need to be aware of any system
upgrading support. The actual state transfer happens at intervals with minimal
workload relying on quiescence. At that step, the role of two UL components is
also changed: the server proxy becomes a simulation object (for version V-1) and
one simulation object (that of version V) becomes the current server proxy. The
software upgrading architecture proposed in [2] is also able to manage non-trivial
public interface updates.
If replicated components were considered, the state transfer problem could be
solved using the replica recovering mechanisms embedded in the replication sup-
port. Thus, old version replicas could be progressively replaced by new version
replicas without any problems [104]. If the new software version requires any
state transformation, such transformation should be applied before the first client
request is forwarded to that joining new-version replica.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 639

Unfortunately, state transformation heavily depends on the application logic. This
means that no system may automate such translation without any programmer
intervention. Even the solution proposed by Li [63] is unable to manage all pos-
sible situations. In the end, the programmer of the new version of the component
being upgraded should write some kind of state-transformation functions for com-
pleting this task [96] and the PaaS system would need to provide a mechanism for
running those functions before completing the state transfer. This explains why
current providers are still unable to automate software upgrades ensuring service
continuity: that mechanism is not provided yet.

5. Minimal overhead There are multiple managerial tasks (to be executed by recon-
figuration threads) related to software upgrading: new version deployment, old
version removal, dynamic version management... Those tasks should be executed
on multiple nodes and should be carefully scheduled in order to minimise their
effect on system performance. To this end, Li distinguishes and evaluates three
different kinds of schedulers:
– Competition scheduler It assigns the same priority to both reconfiguration
threads and regular threads.

– Pre-emptive scheduler It assigns the lowest priority to reconfiguration threads.
Thus, reconfiguration threadswill only be executedwhen no regular threads are
ready to run. This is the recommended approach when the workload at upgrad-
ing time does not saturate the servers being upgraded. It does not endanger
SLA compliance in that case.

– Time-sliced (or controlled competition) scheduler CPU time is divided in time
slots. Reconfiguration threads do only receive a predefined percentage of time;
e.g., 20 or 50 %. This is the best approach if workload already saturates the
service capacity when software upgrading is started.

A performance evaluation is also shown in [63] with different upgrading strategies
and schedulers, assuming that the main SLOs are response time and throughput. Its
results provide these conclusions.When the upgrade is startedwith an already saturated
service, the shortest upgrade time is obtained using a competition scheduler with
state-share and dynamic version management. The latter implies version coexistence
and service continuity. Unfortunately, the SLA is not respected in that case. SLA
compliance is indeed achieved when an appropriate percentage of time (less than
20 % in that example) is assigned to the reconfiguration threads, using the time-sliced
scheduler with global consistency, state-share and dynamic versionmanagement. Note
also that Li does not consider replication. So, he is analysing a hard-to-manage scenario
where the set of available HW resources is static and limited. Even in that scenario,
his proposal is able to complete the software upgrade without violating the response
time and throughput objectives initially settled.

With light workloads that do not saturate the available resources, the strategies that
need to be used are the same (global consistency, state-share and dynamic version
management), but the best scheduler is the pre-emptive one.

These results confirm that each mechanism enumerated in the list, above, progres-
sively reduces the distance between the target SLOs and the achieved performance in
the upgrading interval. Additionally, this verifies that an appropriate scheduler should

123



www.manaraa.com

640 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

be chosen depending on the current workload level: pre-emptive for unsaturated ser-
vices and time-sliced for saturated ones.

Besides [63], Gey et al. [37] also propose upgradingmechanisms that should ensure
service continuity. To this end, they describe an upgrading strategy in stages for
multi-tenant services. Since each tenant may require a different configuration for
such service, the upgrade procedure deals with each tenant (or group of tenants with
similar configurations) in a different stage. That strategy assumes the coexistence and
service continuity mechanisms outlined in [63]. Therefore, each tenant may see how
its needed set of software components is upgraded and reconfigured without compro-
mising service continuity.

4.7 Summary

Table 1 provides a summary of the goals that define each one of the elasticity require-
ments described in this section, with a short description of the mechanisms being
needed to achieve those goals and some references to the papers that have proposed,
surveyed or used those mechanisms.

5 Open problems

As it has been shown in previous sections, several solutions have been presented for
each elasticity requirement in recent public cloud systems and academic proposals.
However, morework is still needed in some of those areas. There are some open issues.
They are discussed in Sect. 5.1. A first set of potential solutions is described later in
Sect. 5.2.

5.1 Challenges

The following challenges remain open and will demand additional research:

1. Relevance of virtual machine manager types in horizontal scaling mechanisms
Although avirtualmachine is the regular unit formanaging infrastructure resources
based on hypervisors, other lightweight supporting approaches [115] exist. These
alternatives may accelerate some of the image management tasks [105], allowing
some component sharing (e.g., the guest operating system in each deployed image
might be equal to the host operating system, and be shared by all the applica-
tions deployed on that host) while still guaranteeing isolation and security in the
management of other resources.
Three basic types of virtual image managers exist [115]:
– Hypervisors A hypervisor (or virtual machine monitor, VMM) [88] is a soft-
ware layer that emulates all the underlying hardware, with the help of the
virtualisation support from the CPU. With this kind of manager, each virtual
machine image (VMI) includes a guest operating system and believes that it
is the exclusive owner of such (virtual) computer. In a given host, each VMI
may be running a different operating system.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 641

Ta
bl

e
1

G
oa
ls
an
d
m
ec
ha
ni
sm

s
fo
r
ea
ch

el
as
tic
ity

re
qu
ir
em

en
t

R
eq
ui
re
m
en
t

G
oa
ls

M
ec
ha
ni
sm

s
R
ef
er
en
ce
s

A
ut
on
om

y
Se
lf
-m

an
ag
em

en
t:
Se
rv
ic
es

sh
ou
ld

be
au
to
m
at
ic
al
ly

ad
m
in
is
te
re
d
w
ith

ou
th

um
an

in
te
rv
en
tio

n

M
A
PE

-K
co
nt
ro
lc
yc
le
.A

de
qu
at
e
pl
at
fo
rm

ar
ch
ite
ct
ur
e

fo
r
m
an
ag
in
g
th
at
co
nt
ro
lc
yc
le
.M

on
ito

ri
ng

su
bs
er
vi
ce
s
an
d
au
to
m
at
ed

pr
ov
is
io
ni
ng

[1
9,
75

,9
0,
97

,1
01

,1
14
]

Sc
al
ab
ili
ty

(a
)
Se
rv
ic
es

sh
ou
ld

be
ab
le
to

m
an
ag
e

in
cr
ea
si
ng

w
or
kl
oa
ds
,u

si
ng

an
in
cr
ea
si
ng

am
ou

nt
of

co
m
pu

tin
g
re
so
ur
ce
s

1.
R
ep
lic
at
io
n
(h
or
iz
on
ta
ls
ca
la
bi
lit
y)

1.
E
ve
ry

Pa
aS

sy
st
em

(b
)
A
cc
ep
ta
bl
e
Q
oS

fo
r
al
lp

os
si
bl
e

w
or
kl
oa
d
le
ve
ls

2.
R
es
iz
in
g
(v
er
tic
al
sc
al
ab
ili
ty
)

2.
[2
5,
39

,9
9]

3.
M
ig
ra
tio

n
(v
er
tic
al
sc
al
ab
ili
ty
)

3.
[1
7,
55

,5
6,
97

,9
9]

A
da
pt
ab
ili
ty

(a
)
Se
rv
ic
e
co
m
po

ne
nt
s
sh
ou

ld
be

de
si
gn

ed
fo
r
ac
ce
pt
in
g
re
co
nfi

gu
ra
tio

ns
at
ru
nt
im

e
1.
Pr
oa
ct
iv
e:
SW

pe
rf
or
m
an
ce

en
gi
ne
er
in
g,
pe
rf
or
m
an
ce

m
od

el
lin

g,
w
or
kl
oa
d
m
od

el
lin

g
1.

[6
,1
2,
19

,2
7,
51

,6
2,
75

,9
3,

97
,1
14
]

(b
)
Se
rv
ic
es

sh
ou
ld

be
ab
le
to

de
al
lo
ca
te

th
ei
r
in
st
an
ce
s
w
he
n
w
or
kl
oa
d
de
cr
ea
se
s

2.
R
ea
ct
iv
e:
th
re
sh
ol
ds

on
re
so
ur
ce

us
ag
e
m
et
ri
cs

or
pe
rf
or
m
an
ce

m
et
ri
cs
,a
da
pt
ab
ili
ty

ru
le
s
fo
r
se
tti
ng

th
os
e
th
re
sh
ol
ds

2.
[1
9,
75

,7
6,
84

,9
0,
10

0,
12

0]

SL
A
-a
w
ar
en
es
s

C
on
si
de
ra
tio

n
of

th
e
SL

A
in

al
le
la
st
ic
ity

m
an
ag
em

en
td

ec
is
io
ns

M
an
ag
em

en
to

f
m
ul
tip

le
se
rv
ic
e
le
ve
lo

bj
ec
tiv

es
in

th
e

SL
A

[1
9,
59

,6
3,
72

, 7
3,
75

,9
3,
97

,
10

1]

C
om

po
sa
bi
lit
y

A
vo
id

se
rv
ic
es

im
pl
em

en
te
d
in

a
m
on
ol
ith

ic
w
ay

U
sa
ge

of
m
od
ul
ar

ar
ch
ite
ct
ur
es

fo
r
se
rv
ic
e
de
si
gn
.

C
on

si
de
ra
tio

n
of

in
te
r-
co
m
po

ne
nt

de
pe
nd

en
ce
s
at

de
pl
oy
m
en
ta
nd

sc
al
in
g
st
ag
es

(S
up

po
rt
ed

by
m
os
tP

aa
S

sy
st
em

s)
[2
2,
29

,7
7]

M
in
im

al
se
rv
ic
e
di
sr
up
tio

n
in

so
ft
w
ar
e
up

gr
ad
es

G
ua
ra
nt
ee

se
rv
ic
e
av
ai
la
bi
lit
y,
sc
al
ab
ili
ty

an
d
ad
ap
ta
bi
lit
y
w
he
n
th
e
se
rv
ic
e
co
de

ne
ed
s
to

be
up

gr
ad
ed

V
er
si
on

co
ex
is
te
nc
e.
D
yn
am

ic
ve
rs
io
n
m
an
ag
em

en
t.

St
at
e
tr
an
sf
er

th
ro
ug
h
sh
ar
in
g.

Sp
ec
ia
lis
ed

up
gr
ad
in
g

sc
he
du
le
rs
.S

er
vi
ce

re
pl
ic
at
io
n.

St
ag
ed

up
gr
ad
in
g

[3
7,
63

]

123



www.manaraa.com

642 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

Some examples of hypervisors are: Microsoft Hyper-V, Oracle VirtualBox,
VMware ESX Server, VMware Player, ...

– Containers Instead of providing a full virtualised image for the hardware, a
container provides a logical operating system (OS) interface. The images being
deployed may have a thin layer that slightly complements the host OS, but all
images are compelled to share that underlying OS. This means that if, e.g., the
host computer is a PC and its OS is a Linux distribution all guest images should
use Linux as their OS. They cannot run any other OS (e.g., Windows) in their
images. Isolation and security are achieved providing a private namespace for
each kind of resource in the guest image. The images being usedwill be smaller
than in a hypervisor approach, since both the OS kernel, basic commands and
many libraries will be shared by all image instances being deployed in a given
host.
Some containers are: Docker, LXC, Virtuozzo, OpenVZ, Linux-VServer, ...

– Paravirtualisation [11,118]. This is a mix of the two previous approaches.
A part of the hardware is virtualised and the remaining hardware pieces are
managed by the host OS that provides some API to the images to be deployed
there. This may reduce the size of the OS kernel image to be used in the VMIs
beingmanagedwith this technique. To this end, those kernels should be slightly
adapted. Thus, different VMs may use different OSs in the same host and their
VMIs might be smaller than with hypervisors.
Some examples of paravirtualisation are: Xen [11], VMware Workstation, ...

There are several performance comparisons among some of the widely used
hypervisors [47,107,113]. Those evaluations should be extended, considering
light-weight containers, in order to delve in the pros and cons of each alterna-
tive. Such research work will yield the platform provider a better basis to decide
which kind of infrastructure resources should be used in each deployment.

2. Identification of the best predictive adaptability strategies for each application type
Although several predictive approaches have been described in Sect. 4.3.1, it is still
unclear which is the best strategy in that field. Proactive adaptivity requires perfor-
mance prediction, workload prediction, or a combination of both approaches. In
order to evaluate the quality of those mechanisms only an afterwards evaluation is
possible, comparing their predictions with the obtained real data. Further research
is needed in order to find the best strategies in this field or, at least, additional
advice about which is the best tool for each kind of problem.

3. Optimal amount of metric thresholds in multi-instance reactive rules Reactive
adaptability is commonly based on a set of scaling decision rules. In each rule a
threshold for a given metric (or group of metrics) is set. When that threshold is
surpassed, a fixed amount of resource instances is added or removed. Therefore,
when a given threshold is surpassed and the difference between the metric and its
threshold is high, it seems convenient to set other thresholds in order to add or
remove a greater amount of resource instances.
Frequent evaluation (e.g., every minute) may demand a considerable computing
effort if the set ofmetrics to be considered is large. Besides, that frequent evaluation
becomes more expensive for the customer. For instance, basic monitoring for
Amazon EC2 instances provides, free of charge, seven metrics at 5-min frequency

123



www.manaraa.com

A survey on elasticity management in PaaS systems 643

and three metrics at 1-min frequency. On the other hand, the detailed monitoring
for EC2 instances monitors all those ten metrics at 1-min frequency but it demands
an additional charge.
Thus, in some cases, longer monitoring intervals (e.g., 5, 10 min,...) will be a
better (or, at least, more affordable) choice. The appropriate length of that interval
depends mainly on the type of application and on the variability of the workload
that such application may introduce.
If a long monitoring interval is used and some metrics have varied a lot their value
in the last interval, the PP should set an appropriate number of thresholds in order
to drive its scale-out or scale-in actions. It should be analysed howmany thresholds
should be used in those cases.

4. Critical component upgradingComponent upgrading needs an underlying upgrade
management subsystem in the platform.There are someproposals of subsystems of
this kind showing a varying degree of automation (the newer, the better) [1,14,15,
106]. That subsystem is also software and it might have bugs or vulnerabilities that
could lead to its upgrade. Unfortunately, such an upgrade could not be dynamic
since there is no support for upgrading the upgrade management system itself.
So, in the end, this might lead to a stop and restart upgrade of an important part
of the platform, causing its temporal unavailability. Perhaps this could be solved
using a minimal and safe upgrade management system that would never need any
upgrade.Which are the principles to be followed in order to design that subsystem?
Additional research is needed for answering that question.

5. Software aging Elastic services deployed in a PaaS system should ensure their
continuity and their QoS. Since software is not perfect, the software aging3 [85]
problem should be considered in cloud platforms. Software aging refers to the
difficulties that arise when a piece of software runs continuously for a long time;
some of its used resources might not be correctly released and, in the end, this
causes some malfunctions: either performance degradation or software crashes.
Some performance losses in deployed services might be caused by software-aging
errors and this may endanger the levels of performance being requested in the
SLA. As a result, this may violate the fourth requirement stated in Sect. 3 (SLA
awareness and compliance). This should be considered in the monitoring and
performance analysis modules of a PaaS platform, reacting in an adequate way
when that software aging problem is detected.
It is worth noting that software aging problems do not depend on how a PP has
built its platform. The platform might be perfect, without any software error, but
it should support the deployment of applications built by its customers. A PP
may not forecast how such customer applications have been built. Some of them
may have resource management errors that will lead to software aging problems.
Because of this, some software aging-related monitoring and management seems
to be convenient in current PaaS systems.

3 Parnas coined the software aging concept in [85] but, actually, he referred to the resource leaking problem
as a “kidney failure” (sic) in [85], since he was comparing the software aging problems with the human
aging ones and resource leaking was only a minor part of the problem being considered.

123



www.manaraa.com

644 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

5.2 Potential solutions

Let us present some initial work already done in the scope of each of those challenges,
discussing some of their potential solutions.

1. Relevance of virtual machine manager types in horizontal scaling mechanisms
Some performance comparisons between hypervisors and containers have been
published recently [31,79]. Let us discuss their results in order to counsel on
further work.
Felter et al. [31] compare three approaches: native deployment, KVM hypervi-
sor and Docker container, using different configurations for Docker. The service
being deployed in those performance comparisons is the MySQL relational data-
base management system. Three different Docker configurations were used. The
most efficient Docker deployment added only a 2 % overhead on the performance
of a native deployment, while the KVM hypervisor introduced 40 % overhead.
That overhead is caused mainly by I/O operations. Therefore, it would have been
minimised if the services being deployed could do a few long I/O actions instead
of many short ones. That was not the case in the tested configuration for MySQL.
Regarding CPU overhead, both hypervisors and containers are very efficient, with
less than 1 % overhead on average.
Morabito et al. [79] compare a Linux native deployment with the KVM hypervisor
(with Linux as its guest OS), LXC and Docker containers and with the OSv [54]
library OS on top of the KVM hypervisor. Library OSes like OSv are a minimal
set of operating system modules that may run on top of a hypervisor, reducing to
a minimum the overhead of the guest OS being executed on such hypervisor. OSv
provides a (reduced) Linux system call interface and, thus, it is able to run some
types of Linux applications.
Multiple benchmarks are used in [79] in order to evaluate CPU-, network- and disk
I/O-related overheads. The results show again that both containers and hypervi-
sors introduce a negligible overhead in CPU-related benchmarks. Regarding disk
I/O operations, containers introduce an overhead from 7 to 40 % while hypervi-
sors’ overhead is between 50 and 93 %, depending on the benchmark being used.
Regarding network-related benchmarks, the overheads are in the 0–43 % range
for containers, 28–54 % range for hypervisors and 26–47 % range for OSv.
These results suggest that containers have become an interesting option for deploy-
ing applications nowadays. However, it is worth noting that containers cannot
provide the same level of security and isolation among deployed applications than
hypervisors do. Moreover, there are not yet efficient containers for all possible
OSes, since that technology has been developed at the moment for Linux distrib-
utions.
Thus, PPs should start to consider supporting both hypervisors/paravirtualisers
and containers in their provisions, choosing the best variant for each application to
be deployed. If the application has not strong isolation requirements and may be
run on a Linux OS, containers may be used on top of host Linux machines. On the
other hand, when an application has strong isolation requirements or it demands
a non-Linux OS, either hypervisors or paravirtualisation will be the best choice.

123



www.manaraa.com

A survey on elasticity management in PaaS systems 645

Note that most PPs have traditionally used hypervisors or paravirtualisers as their
virtualmachinemanagers and that base should be stillmaintained.However,multi-
ple library OSes, containers, hypervisors, and paravirtualisation approaches exist
nowadays; therefore, a thorough comparison of all of them should be periodi-
cally made in order to choose the best alternative in each branch, since some of
these technologies (especially library OSes and containers) are still evolving and
improving their performance and features.

2. Identification of the best predictive adaptability strategies for each application
type In order to provide a valid solution for this challenge an in-depth survey on
predictive adaptability strategies is needed. A survey of this kind has been written
by Lorido-Botran et al. [66]. That paper identifies four main classes of predictive
strategies:
– Reinforcement learning (RL) [110]RLautomates the scaling taskwithout using
any a-priori knowledge or model of the application. Thus, RL learns the most
suitable action for each particular application state following a trial-and-error
approach, dynamically. This introduces the problem of needing long initial
learning stages. As a result, the time needed for converging onto an optimal
policy might be infeasibly long using this strategy. This explains why we have
not discussed RL in Sect. 4.3.1.

– Queuing theory (QT) [61] QT sets a model of the application or system being
considered. To this end, each request processing element is considered a server
and its received requests are modelled with an incoming queue. QT defines
rigid (i.e., static) models and this introduces its main drawback: each time the
service is scaled, the QT model should be remade. In a similar way, workload
variations demand that per each workload level to be considered, a new QT
model configuration with a different arrival rate should be evaluated.

– Control theory (CT) [119] CT also defines a model of the application. In this
case, that model is based on two different “variables”: a controlled variable
(or output) that should be maintained close to a desired control point, and a
manipulated variable (or input) that may be adjusted at will and is the input to
the modelled system. Using CT in our target scope means that the controlled
variable should be a SLO (e.g., response time) while the control point will be
the acceptable range for that SLO in the SLA, and the manipulated variable
will be one of the system metrics (e.g., amount of VMs). A CT model needs
to state the relationship between its manipulated and controlled variables. To
this end, a transfer function is needed. The ARMA function presented in [84]
is an example of this kind.

– Time series analysis (TS) [86] TS encompasses a large set of strategies that
identify patterns in a set of data points. Those data points are collected, at
a given frequency, either from the history of registered workloads or service
performance metrics. The precision in the forecast values depends on selecting
the best TS strategy and on choosing its correct parameters, mainly its history
window and prediction interval.

In spite of this, Lorido-Botran et al. [66] have not been able to provide an answer to
this challenge; i.e., they do not identify which is the best strategy for each possible

123



www.manaraa.com

646 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

type of application to be deployed in a PaaS system. However, the analysis of each
proactive strategy provides some help to reach that goal.
To begin with, RL may be discarded due to its too long learning phase.
QTmay be used for services with a linear behaviour in their serving capacity (e.g.,
web services consisting of a few components that do not use persistent state), but
will demand the adaptation and evaluation of its QT model on each scaling action.
This requires a non-negligible computing effort for the PP in its MAPE analysis
(evaluation of theQTmodel) and execution (QTmodel rebuilding) stages. The sur-
veyed papers using this strategy seem to be adequate for considering the application
response time as itsmain SLO. Therefore, simple interactive servicesmay consider
QT as a potentially valid predictive strategy. Despite this, the systems and services
being evaluated in those surveyed papers were not yet in a production stage.
CT is a general strategy. Thus, there are multiple types of controllers (e.g., fixed
gain, adaptive, model-predictive...) and multiple types of transfer functions (e.g.,
auto-regressive moving average, Kalman filters, smoothing splines, Gaussian
process regression, fuzzy models...). As a result of this, there are many combi-
nations of those two CT parameters and there has been no work looking for the
most appropriate combination of them for each kind of elastic service.
TS is also a general strategy. There are two subclasses of strategies [66]: those
focused on the direct prediction of future values (e.g., moving average, exponen-
tial smoothing, auto-regression order, machine-learning techniques...) and those
identifying a repetitive pattern that may be used later for value forecasting (e.g.,
pattern matching, signal processing, auto-correlation...). As a result, we find the
same problems than in the CT strategy: no study has been made yet for identifying
possible (TS variant, application class) relationships.

3. Optimal amount of metric thresholds in multi-instance reactive rules If there were
multiple thresholds for the same reactive action, the scaling decisions would add
or remove different amounts of resources when each threshold were surpassed.
Following such strategy, the PP might use larger monitoring intervals, reducing
the computing efforts for that monitoring stage.
Casalicchio and Silvestri [19] have analysed the usage of long evaluation intervals
(either 1 or 5 min) for reactive adaptive approaches. In that paper they evaluate the
usage of one or two thresholds for driving the scaling decisions, as we have seen
in Sect. 4.3.2. Using two thresholds, the service is able to ensure the lowest value
in the response time SLO. However, with one threshold, the provider was able
to minimise its costs. Additionally, the experiments carried out in [19] confirmed
that the obtained results from each existing reactive approach depend a lot on the
workloadbeing considered.Therefore, there is no clearwinner policy in this regard.
Hasan et al. [42] also proposes the usage of two upper (thrU and thrbU) and two
lower (throL and thrL) thresholds. Two of these thresholds (thrU and thrL) define
the upper and bottom boundaries, while the other two (thrbU and throL) define
a more relaxed frontier. For instance, if we were considering CPU utilisation, the
following values would make sense: thrL = 20 %, throL = 30 %, thrbU = 70 %
and thrU = 80 %. The metric value is obtained periodically, and a set of rules is
considered for taking scaling decisions. There is a duration interval (by default,
5 min) that is started each time the thrL or thrU thresholds are surpassed. Thus,

123



www.manaraa.com

A survey on elasticity management in PaaS systems 647

in order to scale out, the metric value should have exceeded thrU initially, and
remain above thrbU at the end of the duration interval. Otherwise, no action is
taken. In a similar way, a scale-in decision is taken when the metric value was
lower than the thrL threshold initially and below throL at the end of the duration
interval. But there are several other rules that consider all four thresholds and the
previous duration intervals in order to either release a lower amount of instances
per scale-in action or remain stable without scaling in or out. All these rules allow
a consistent scaling behaviour in case of workload jitter and a more relaxed way of
releasing resources when the workload decreases slowly. Besides this, these rules
may be applied to groups of correlated metrics, requiring that all metrics in the
group surpass their thresholds in order to start a scaling action.
Another possibility consists in using a single threshold of each kind (upper and
lower), but being dynamic instead of static. An example of this technique, called
proportional thresholding, was proposed by Lim et al. [64]. It consists in adjusting
the thresholds depending on the number of computing resources being used. For
instance, in the use case described in [64] the metric being used is CPU utilisation
and the lower thershold depends on the current number of assigned VMs. Thus,
the lower threshold is initially set to 0 % CPU usage when only 1 VM is assigned,
being increased to 14 % when there are 2 VMs and to 23 % with 3 VMs (while,
with static thresholds, a fixed value of 20 % might be used in the same scenario).
The concrete values to be used in that lower threshold depend on a previous analy-
sis on the relationship between CPU utilisation, workload, and amount of VMs.
Using a regression model, a function can be found for computing the expected
increase or decrease on CPU utilisation when a VM is added or released at each
workload level. That function determines the appropriate value for the thresholds
depending on the current number of VMs assigned to the evaluated service.
A related question in this challenge is the optimal length of the monitoring inter-
vals. Emeakaroha et al. [30] analyse that problem when the POV-Ray application
is deployed in the cloud. POV-Ray is a compute-intensive application for image
rendering. Three different workloads are considered in [30] depending on their
frame-rendering time demands: (a) variable, (b) increasing, and (c) constant and
moderate. Six different monitoring intervals are considered: 5, 10, 20, 30, 60 and
120 s. Considering measurement costs and missing SLA violation detection costs,
the optimal interval is 10 s for workloads (a) and (b), and 20 s for workload (c).
In workload (c), all intervals greater than or equal to 10 s provide very low costs.
Therefore, it seems that constant workloads may use any monitoring interval and,
in those cases, a long interval will make sense. On the other hand, workloads (a)
and (b) do not tolerate intervals longer than 10 s for the POV-Ray application, since
those long intervals introduce many undetected SLA violations and those missed
violations might introduce expensive penalties for both customer and provider
since, in the end, they cause an unexpected behaviour in the deployed application.
Those results do not imply that the idealmonitoring intervalwill be 10 s in all cases.
As we have seen, that optimal interval depends on the variability of the workload.
Besides this, it also depends on the application type and on the concrete SLA being
managed. Therefore, Emeakaroha et al. [30] state that similar comparisons are still
demanded for other types of applications and each SLA being considered.

123



www.manaraa.com

648 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

All these works provide a good basis for further research in this challenge. New
results are demanded considering different monitoring intervals, as it has been
suggested in [30]. Dynamic thresholds may be further studied considering other
policies for varying those thresholds.

4. Critical component upgradingNo clear solution exists yet for this challenge. Let us
describe a possible solution for the easiest case: an upgrade that fixes an implemen-
tation error in one of the components of the platform, but that does not introduce
any modification in the platform interfaces. Since elastic services must be scal-
able and scalability demands replication, all deployed elastic service components
will be replicated. The same will happen with most of the platform components:
they are also replicated. This allows a progressive critical component upgrading;
i.e., that those platform components are upgraded in stages, following a rolling
principle [109].
In a rolling upgrade, the set of replicas is divided in multiple small subsets. Each
subset is upgraded in adifferent round. In thisway,while a subset is beingupgraded,
all the remaining ones are active, serving their incoming requests. This ensures
that service availability is not lost, although overall performance may be slightly
reduced.
When the component to be upgraded belongs to the platform, Potter and Nieh [89]
suggest a solution based on migration. The components being run on top of that
component must be temporarily migrated to other hosts. To this end, Potter and
Nieh propose the POD (Process Domain) mechanism that is a type of light-weight
container. PODs have been used for solving the problem of operating-system
upgrades, assuming that the OS interface does not change in such upgrade. In that
case, the application image is migrated to another host while the underlying OS is
being upgraded. In this way, the host instance where the OS should be upgraded
remains idle while the applications initially hosted by it have been migrated to
other hosts.
However, other types of upgrades—involving either interface modifications or
complex state transformations between the software versions—are not easy to
implement following the rolling upgrade principle or client process migrations. If
those upgrades involve a critical component of the platform or one of the com-
ponents of the software upgrading subsystem, further research will be needed for
managing those scenarios.

5. Software aging and software rejuvenation The software rejuvenation fix [36] is
the common solution to the software aging problem.
When a performance degradation is detected in the analysis stage of the MAPE
control cycle, a rejuvenation action should be triggered. Rejuvenation consists in
a restart of those component instances with degraded performance. Since multiple
instances per component exist in the regular case and those instances are carefully
monitored in a periodical way, it should be easy to detect when a software-aging
error is happening (i.e., when with the same request arrival rate and the same
assigned resources, the performance of a given server instance is decreasing). To
this end, the CT and TS predictive approaches discussed above might be extended
in order to evaluate if any performance degradation is occurring at each moment,
triggering a rejuvenation action when appropriate [23]. Stopping and restarting

123



www.manaraa.com

A survey on elasticity management in PaaS systems 649

any faulty instance will not be a problem in this scope, since many component
replicas exist and each of them might have been started and would show degrada-
tion at different times, but the machinery needed by these actions should exist and
should be used correctly.
This general principle has been proposed and applied in several research papers
related to cloud computing, but public cloud providers do not discuss software
aging and rejuvenation in their documentation. Let us describe a few of these
proposals in the sequel. A thorough discussion about general software aging and
rejuvenation approaches has been provided by Cotroneo et al. in [23].
Araujo et al. [5] discusses the software aging problems detected in the 32-bit
release of the Eucalyptus’ node controller software. Eucalyptus is a framework
for private IaaS management. Those software aging problems appeared in the
memory management module of the node controller component. It released mem-
ory in an incorrect way. As a result of this, the host residentmemorywas eventually
exhausted, evenwhen all VMs deployed on it were terminated. Although this prob-
lem appeared at the IaaS layer, it may appear in any customer application being
deployed on a PaaS system; e.g., Zhao et al. [122] explain software aging detec-
tion and rejuvenation approaches for the Apache HTTP Server. Therefore, those
management solutions are interesting for PPs in order to know how to deal with
rejuvenation of those customer applications that demand continuous execution;
e.g., web services.
Langner andAndrzejak [60] go a step further. Instead of relying on the performance
monitoring machinery of the cloud platform in order to detect as soon as possible
any performance degradation, they look for some metrics that are independent on
the workload and that can be applied at the end of the software development stage,
before deploying the application in its production environment. This proposal is
based on the fact that software aging errors are regularly caused by coding faults.
Thus, a history of the latest versions of the application or component to be studied
must exist. Each of those versions is benchmarked considering multiple metrics
and those results are compared in order to detect significant differences in any of
them among that collection of software metrics. If any difference appears and it
suggests an incorrect resource management, that version will be returned to the
debugging stage in order to detect the coding error and fix it. This will prevent
some software aging errors from appearing at the production stage since they will
be diagnosed and fixed at the end of the development stage.
Matias Jr et al. [68] improves the solution presented in [60], applying systematic
statistical processing techniques for automated metrics comparison, in order to
detect in a more reliable way software aging errors at the end of the develop-
ment stage. Note that the approach described in [60] required a non-automated
comparison.
Liu et al. [65] assume that the PP supports VM migration as one of the ways to
implement scale-up actions. Note that the VM migration mechanism demands an
image checkpoint in order to start a migration. Those checkpoints may be con-
served and taken as a basis for the rejuvenation procedure. Instead of restarting
from scratch the instances that show software aging errors, a recent checkpoint
is taken for accelerating those restarts. This proposal considers the regular per-

123



www.manaraa.com

650 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

formance evaluation mechanisms for detecting when the performance or resource
usage metrics of a given instance signals an aging error. Besides, the migration
machinery ensures that if the aging errorwas caused by a resource leaking problem,
when a checkpoint is used for restarting the instance, a “clean” image is recovered.
These papers do not show a complete picture of the software aging research area
(there are many others), but they already provide arguments in favour of consid-
ering some solutions to this problem in every cloud computing platform.

5.3 Summary

Table 2 provides a summary of the challenges presented in this section, with a short
description of their potential solutions and some references to the papers that have
proposed those solutions.

Table 2 Elasticity: challenges and potential solutions

Challenge Potential solutions References

VM manager type to consider
in horizontal scaling

1. Comparison of the overheads introduced by
hypervisors, paravirtualisers and containers

[31,47,79,105,107,
113,115]

2. Refinement of that comparison per application
type

3. Revision of the previous solutions when new
generations of containers and library OSes
arise

Identify the best predictive
adaptability approaches

1. Analysis of the existing predictive strategies
and the workloads supported by the main
application types

[66]

Optimal amount of metric
thresholds in multi-instance
reactive rules

1. Comparison of elasticity efficiency depending
on the amount of thresholds

[19,30,42,64]

2. Assessment of dynamic thresholds

3. Assessment of different threshold evaluation
intervals

Critical component upgrading 1. First try with rolling upgrades, assuming
replicated services

[2,14,15,89,106,109]

2. Combination with checkpointing and
migration mechanisms

Software aging 1. Correct identification of software aging
problems when there is any performance
degradation

[5,23,60,65,68]

2. Usage of software rejuvenation instead of
scale-out actions in those cases

3. Careful software aging diagnosis at the end of
the development stage

4. Acceleration of rejuvenation actions with
checkpointing/migration mechanisms

123



www.manaraa.com

A survey on elasticity management in PaaS systems 651

6 Conclusions

Elasticity can be defined as the autonomic management of service scalability and
adaptivity when such service deals with a dynamic workload. Such kind of elasticity
is a goal in all cloud computing service models (IaaS, PaaS and SaaS) but most
of its inherent issues can be found in computing platforms, since they should deal
with an autonomic management of customer applications, in all their control life
cycle.

This paper has identified a set of elasticity-related requirements in PaaS systems.
Autonomic management, scalability and adaptivity are inherent to the elasticity def-
inition. SLA awareness, composability and minimal service disruption in upgrading
intervals are three other requirements to be managed in these systems. There are
multiple mechanisms that partially comply with each requirement. They have been
described, providing some pointers to recent research results in each area.

Combining all those mechanisms and techniques, elastic PaaS systems may be
built nowadays. In spite of this, current solutions can still be improved. We have
identified several open problems, providing some hints to deal with them. From a
general point of view, those open problems are related to adaptivity. In order to be
adaptive, a provider should be able to manage multiple mechanisms for solving a
particular problem, knowing which of those alternatives is the best in each scenario.
So, existing solutions should be carefully analysed, identifying their pros and cons
in each scope and finding other variants that minimise their implementation efforts
and costs. Besides those comparison-related concerns, software upgrade management
when QoS levels should be guaranteed is an open problem by itself. Some solutions
have been proposed but they are not yet mature enough.

When all these aspects are considered, we realise that elasticity management in the
PaaS service model is an active research area amenable to improvement.

Acknowledgements This work has been partially supported by EU FEDER and Spanish MINECO under
research Grant TIN2012-37719-C03-01.

References

1. Ajmani S (2004) Automatic software upgrades for distributed systems. PhD thesis, Department of
Electrical and Computer Science, Massachusetts Institute of Technology, USA

2. Ajmani S, Liskov B, Shrira L (2006) Modular software upgrades for distributed systems. In: 20th
European Conference on Object-Oriented Programming (ECOOP), Nantes, France, pp 452–476

3. Alhamad M, Dillon TS, Chang E (2010) Conceptual SLA framework for cloud computing. In: 4th
International Conference on Digital Ecosystems and Technologies (DEST), Dubai, pp 606–610

4. Almeida S, Leitão J, Rodrigues LET (2013) ChainReaction: a causal+ consistent datastore based on
chain replication. In: 8th EuroSys Conference, Prague, Czech Republic, pp 85–98

5. Araujo J, Matos R, Maciel PRM, Matias R (2011) Software aging issues on the Eucalyptus cloud
computing infrastructure. In: IEEE International Conference on Systems, Man, and Cybernetics
(SMC), Anchorage, Alaska, USA, pp 1411–1416

6. Arief LB, Speirs NA (2000) A UML tool for an automatic generation of simulation programs. In:
Worshop on Software and Performance (WOSP), Ottawa, Canada, pp 71–76

7. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin
A, Stoica I, Zaharia M (2010) A view of cloud computing. Commun ACM 53(4):50–58

123



www.manaraa.com

652 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

8. Bailis P, Ghodsi A (2013) Eventual consistency today: limitations, extensions, and beyond. Commun
ACM 56(5):55–63

9. Bailis P, Ghodsi A, Hellerstein JM, Stoica I (2013) Bolt-on causal consistency. In: Intnl Conf Mgmnt
Data (SIGMOD). NY, USA, New York, pp 761–772

10. Balsamo S, Marco AD, Inverardi P, Simeoni M (2004) Model-based performance prediction in soft-
ware development: a survey. IEEE Trans Softw Eng 30(5):295–310

11. Barham P, Dragovic B, Fraser K, Hand S, Harris TL, Ho A, Neugebauer R, Pratt I, Warfield A (2003)
Xen and the art of virtualization. In: 19th ACMSymposium onOperating Systems Principles (SOSP),
Bolton Landing, NY, USA, pp 164–177

12. Bennani MN, Menascé DA (2005) Resource allocation for autonomic data centers using analytic
performance models. In: 2nd Intnl Conf Auton Comput (ICAC), Seattle, WA, USA, pp 229–240

13. Birman KP (1996) Building Secure and Reliable Network Applications. Manning Publications Co.,
ISBN 1-884777-29-5

14. Bloom T (1983) Dynamic module replacement in a distributed programming system. PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
USA

15. Bloom T, Day M (1993) Reconfiguration and module replacement in Argus: theory and practice.
Softw Eng J 8(2):102–108

16. Caballer M, Segrelles Quilis JD, Moltó G, Blanquer I (2015) A platform to deploy customized
scientific virtual infrastructures on the cloud. Concurr Comput Pract E 27(16):4318–4329

17. Calatrava A, Romero E, Moltó G, Caballer M, Alonso JM (2016) Self-managed cost-efficient virtual
elastic clusters on hybrid cloud infrastructures. Future Gener Comp Syst 61:13–25

18. Calcavecchia NM, Caprarescu BA, Nitto ED, Dubois DJ, Petcu D (2012) DEPAS: a decentralized
probabilistic algorithm for auto-scaling. Computing 94(8–10):701–730

19. Casalicchio E, Silvestri L (2013)Mechanisms for SLA provisioning in cloud-based service providers.
Comput Netw 57(3):795–810

20. Casalicchio E, Menascé DA, Aldhalaan A (2013) Autonomic resource provisioning in cloud systems
with availability goals. In: ACMCloud Autonomic Computing Conference (CAC), FL, USA, Miami,
pp 1–10

21. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M, Chandra T, Fikes A, Gruber RE
(2008) Bigtable: a distributed storage system for structured data. ACM Trans Comput Syst 26(2):4

22. Copil G, Trihinas D, Truong HL,Moldovan D, Pallis G, Dustdar S, DikaiakosMD (2014) ADVISE—
A framework for evaluating cloud service elasticity behavior. In: 12th International Conference on
Service-Oriented Computing (ICSOC), France, Paris, pp 275–290

23. Cotroneo D, Natella R, Pietrantuono R, Russo S (2014) A survey of software aging and rejuvenation
studies. ACM J Emerg Technol 10(1):8:1–8:34

24. Coutinho EF, de Carvalho Sousa FR, Rego PAL, Gomes DG, de Souza JN (2015) Elasticity in cloud
computing: a survey. Ann Telecommun 70(15):289–309

25. Dawoud W, Takouna I, Meinel C (2011) Elastic VM for cloud resources provisioning optimization.
In: 1st International Conference on Advances in Computing and Communications (ACC), Kochi,
India, pp 431–445

26. de Juan-Marín R, Decker H, Armendáriz-Íñigo JE, Bernabéu-Aubán JM, Muñoz-EscoíFD (2015)
Scalability approaches for causal multicast: a survey. Computing (in press)

27. de Miguel M, Lambolais T, Hannouz M, Betgé-Brezetz S, Piekarec S (2000) UML extensions for the
specification and evaluation of latency constraints in architectural models. In: Workshop on Software
and Performance (WOSP), Ottawa, Canada, pp 83–88

28. Demers AJ, Greene DH, Hauser C, Irish W, Larson J, Shenker S, Sturgis HE, Swinehart DC, Terry
DB (1987) Epidemic algorithms for replicated database maintenance. In: 6th ACM Symposium on
Principles of Distributed Computing (PODC), Vancouver, Canada, pp 1–12

29. Dustdar S, GuoY, Satzger B, TruongHL (2011) Principles of elastic processes. IEEE Internet Comput
15(5):66–71

30. Emeakaroha VC, Brandic I, Maurer M, Dustdar S (2013) Cloud resource provisioning and SLA
enforcement via LoM2HiS framework. Concurr Comput Pract E 25(10):1462–1481

31. Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual
machines and Linux containers. In: IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), Philadelphia, PA, USA, pp 171–172

123



www.manaraa.com

A survey on elasticity management in PaaS systems 653

32. Fox A, Brewer EA (1999) Harvest, yield and scalable tolerant systems. In: 7th Workshop on Hot
Topics in Operating Systems (HotOS), Rio Rico, Arizona, USA, pp 174–178

33. Galante G, De Bona LCE (2012) A survey on cloud computing elasticity. In: 5th International Con-
ference on Utility and Cloud Computing (UCC), Chicago, IL, USA, pp 263–270

34. Galante G, De Bona LCE, Mury AR, Schulze B, Righi RR (2016) An analysis of public clouds
elasticity in the execution of scientific applications: a survey. J Grid Comput 14(2):193–216

35. GambiA,HummerW,TruongHL,Dustdar S (2013) Testing elastic computing systems. IEEE Internet
Comput 17(6):76–82

36. Garg S, van Moorsel APA, Vaidyanathan K, Trivedi KS (1998) A methodology for detection and
estimation of software aging. In: 9th International Symposium on Software Reliability Engineering
(ISSRE), Paderborn, Germany, pp 283–292

37. Gey F, Landuyt DV, Joosen W (2015) Middleware for customizable multi-staged dynamic upgrades
of multi-tenant SaaS applications. In: 8th IEEE/ACM International Conference on Utility and Cloud
Computing (UCC), Limassol, Cyprus, pp 102–111

38. Gilbert S, Lynch NA (2002) Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33(2):51–59

39. Gong Z, Gu X, Wilkes J (2010) PRESS: PRedictive Elastic reSource Scaling for cloud systems. In:
6th International Conference on Network and Service Management (CNSM), Niagara Falls, Canada,
pp 9–16

40. Grozev N, Buyya R (2014) Inter-cloud architectures and application brokering: taxonomy and survey.
Softw Pract Exp 44(3):369–390

41. Hammer M (2009) How to touch a running system. reconfiguration of stateful components. PhD
thesis, Facultät fürMathematik, Informatik und Statistik, Ludwig-Maximilians-UniversitätMünchen,
Munich, Germany

42. Hasan MZ, Magana E, Clemm A, Tucker L, Gudreddi SLD (2012) Integrated and autonomic cloud
resource scaling. In: IEEE Network Operations and Management Symposium (NOMS), Maui, HI,
USA, pp 1327–1334

43. Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: What it is, and what it is not.
In: 10th International Conference on Autonomic Computing (ICAC), San Jose, CA, USA, pp 23–27

44. Hermanns H, Herzog U, Katoen J (2002) Process algebra for performance evaluation. Theor Comput
Sci 274(1–2):43–87

45. Horn P (2001) Autonomic computing: IBM’s perspective on the state of information technology.
Tech. rep. IBM Press

46. Huebscher MC, McCann JA (2008) A survey of autonomic computing—degrees, models, and appli-
cations. ACM Comput Surv 40(3):7

47. Hwang J, Zeng S, Wu F, Wood T (2013) A component-based performance comparison of four hyper-
visors. In: International Symposium on Integrated Network Management (IM), Ghent, Belgium, pp
269–276

48. IBM (2006) An architectural blueprint for autonomic computing. White paper, 4th ed
49. Iosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema DHJ (2011) Performance analysis

of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst
22(6):931–945

50. Ivanovic D, Carro M, Hermenegildo MV (2013) A sharing-based approach to supporting adaptation
in service compositions. Computing 95(6):453–492

51. Jiang Y, Perng C, Li T, Chang RN (2011) ASAP: A self-adaptive prediction system for instant cloud
resource demandprovisioning. In: 11th InternationalConference onDataMining (ICDM),Vancouver,
Canada, pp 1104–1109

52. Johnson PR, ThomasRH (1975) Themaintenance of duplicate databases. RFC677,NetworkWorking
Group, Internet Engineering Task Force

53. Kephart JO, Chess DM (2003) The vision of autonomic computing. IEEE Comput 36(1):41–50
54. Kiviti A, Laor D, Costa G, Enberg P, Har’El N, Marti D, Zolotarov V (2014) OSv—Optimizing the

operating system for virtual machines. In: USENIX Annual Technical Conference (ATC), Philadel-
phia, PA, USA, pp 61–72

55. Knauth T, Fetzer C (2011) Scaling non-elastic applications using virtual machines. In: IEEE Interna-
tional Conference on Cloud Computing (CLOUD), Washington, DC, USA, pp 468–475

56. KnauthT, FetzerC (2014)DreamServer: truly on-demand cloud services. In: InternationalConference
on Systems and Storage (SYSTOR), Haifa, Israel, pp 1–11

123



www.manaraa.com

654 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

57. Kramer J, Magee J (1990) The evolving philosophers problem: dynamic change management. IEEE
Trans Softw Eng 16(11):1293–1306

58. Lakshman A, Malik P (2010) Cassandra: a decentralized structured storage system. Oper Syst Rev
44(2):35–40

59. LangW, Shankar S, Patel JM, Kalhan A (2014) Towards multi-tenant performance SLOs. IEEE Trans
Knowl Data Eng 26(6):1447–1463

60. Langner F, Andrzejak A (2013) Detecting software aging in a cloud computing framework by
comparing development versions. In: IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ghent, Belgium, pp 896–899

61. Lazowska ED, Zahorjan J, Graham GS, Sevcik KC (1984) Quantitative system performance. Com-
puter system analysis using queueing network models. Prentice Hall, Upper Saddle River

62. Leitner P, Michlmayr A, Rosenberg F, Dustdar S (2010) Monitoring, prediction and prevention of
SLA violations in composite services. In: IEEE International Conference on Web Services (ICWS),
Florida, USA, Miami, pp 369–376

63. Li W (2011) Evaluating the impacts of dynamic reconfiguration on the QoS of running systems. J
Syst Softw 84(12):2123–2138

64. Lim HC, Babu S, Chase JS, Parekh SS (2009) Automated control in cloud computing: challenges and
opportunities. In: 1st ACM Workshop Automated Control Datacenters Clouds (ACDC), Barcelona,
Spain, pp 13–18

65. Liu J, Zhou J, Buyya R (2015) Software rejuvenation based fault tolerance scheme for cloud appli-
cations. In: 8th IEEE International Conference on Cloud Computing (CLOUD), New York City, NY,
USA, pp 1115–1118

66. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-scaling techniques for elastic
applications in cloud environments. J Grid Comput 12(4):559–592

67. Massie M, Li B, Nicholes B, Vuksan V, Alexander R, Buchbinder J, Costa F, Dean A, Josephsen D,
Phaal P, Pocock D (2012) Monitoring with Ganglia. O’Reilly Media, Tracking Dynamic Host and
Application Metrics at Scale. ISBN 978-1-4493-2970-9

68. Matias R Jr, Andrzejak A, Machida F, Elias D, Trivedi KS (2014) A systematic differential analysis
for fast and robust detection of software aging. In: 33rd IEEE Symposium on Reliable Distributed
Systems (SRDS). Nara, Japan, pp 311–320

69. Medina V, García JM (2014) A survey of migration mechanisms of virtual machines. ACM Comput
Surv 46(3):30

70. Mell P, Grance T (2011) The NIST definition of cloud computing. Recommendations of the National
Institute of Standards and Technology, Special Publication 800-145

71. Menascé DA, BennaniMN (2006) Autonomic virtualized environments. In: International Conference
on Autonomic and Autonomous Systems (ICAS), Silicon Valley, California, USA, p 28

72. MenascéDA,Ngo P (2009) Understanding cloud computing: Experimentation and capacity planning.
In: 35th International Computer Measurement Group Conference, Dallas, TX, USA

73. Menascé DA, Ruan H, Gomaa H (2007) QoS management in service-oriented architectures. Perform
Eval 64(7–8):646–663

74. Miedes E, Muñoz-Escoí FD (2010) Dynamic switching of total-order broadcast protocols. In: Inter-
national Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA),
Las Vegas, Nevada, USA, pp 457–463

75. Mohamed M (2014) Generic monitoring and reconfiguration for service-based applications in the
cloud. PhD thesis, Université d’Evry-Val d’Essonne, France

76. Mohamed M, Amziani M, Belaïd D, Tata S, Melliti T (2015) An autonomic approach to manage
elasticity of business processes in the cloud. Future Gener Comp Sys 50(C):49–61

77. MohdYusoh ZI (2013) Composite SaaS resourcemanagement in cloud computing using evolutionary
computation. PhD thesis, Sc Eng Faculty, Queensland University of Technology, Brisbane, Australia

78. Montero RS, Moreno-Vozmediano R, Llorente IM (2011) An elasticity model for high throughput
computing clusters. J Parallel Distrib Comput 71(6):750–757

79. Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance
comparison. In: IEEE International Conference on Cloud Engineering (IC2E), Tempe, AZ, USA, pp
386–393

80. Najjar A, Serpaggi X, Gravier C, Boissier O (2014) Survey of elasticity management solutions in
cloud computing. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends in cloud
computing. Springer, Berlin, pp 235–263

123



www.manaraa.com

A survey on elasticity management in PaaS systems 655

81. Naskos A, Gounaris A, Sioutas S (2015) Cloud elasticity: a survey. In: 1st International Workshop
on Algorithmic Aspects of Cloud Computing (ALGOCLOUD), Patras, Greece, pp 151–167

82. Neamtiu I, Dumitras T (2011) Cloud software upgrades: challenges and opportunities. In: IEEE
International Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based
Systems (MESOCA), Williamsburg, VA, USA, pp 1–10

83. Neuman BC (1994) Scale in distributed systems. In: Singhal M, Casavant TL (eds) Readings in
Distributed computing systems. IEEE-CS Press, Los Alamitos, pp 463–489

84. Padala P, Shin KG, Zhu X, Uysal M, Wang Z, Singhal S, Merchant A, Salem K (2007) Adaptive
control of virtualized resources in utility computing environments. In: EuroSys Conference Lisbon,
Portugal, pp 289–302

85. Parnas DL (1994) Software aging. In: 6th International Conference on Software Engineering (ICSE),
Sorrento, Italy, pp 279–287

86. Parzen E (1960)A survey on time series analysis. Tech. rep., n. 37, AppliedMathematics and Statistics
Laboratory, Stanford University, Stanford, CA, USA

87. Pascual-Miret L, González deMendívil JR, Bernabéu-Aubán JM,Muñoz-Escoí FD (2015)Widening
CAP consistency. Tech. rep., IUMTI-SIDI-2015/003, Univ. Politècnica de València, Valencia, Spain

88. Popek GJ, Goldberg RP (1974) Formal requirements for virtualizable third generation architectures.
Commun ACM 17(7):412–421

89. Potter S,Nieh J (2005)AutoPod:Unscheduled systemupdateswith zero data loss. In: 2nd International
Conference on Autonomic Computing (ICAC), Seattle, WA, USA, pp 367–368

90. Rajagopalan S (2014) System support for elasticity and high availability. PhD thesis, The University
of British Columbia, Vancouver, Canada

91. Reinecke P, Wolter K, van Moorsel APA (2010) Evaluating the adaptivity of computing systems.
Perform Eval 67(8):676–693

92. Rolia JA, Sevcik KC (1995) The method of layers. IEEE Trans Softw Eng 21(8):689–700
93. Roy N, Dubey A, Gokhale AS (2011) Efficient autoscaling in the cloud using predictive models

for workload forecasting. In: 4th IEEE International Conference on Cloud Computing (CLOUD),
Washington, DC, USA, pp 500–507

94. Ruiz-Fuertes MI, Muñoz-Escoí FD (2009) Performance evaluation of a metaprotocol for database
replication adaptability. In: 28th IEEE Symposium on Reliable Distributed Systems (SRDS), Niagara
Falls, New York, USA, pp 32–38

95. Saito Y, Shapiro M (2005) Optimistic replication. ACM Comput Surv 37(1):42–81
96. SeifzadehH, Abolhassani H,MoshkenaniMS (2013) A survey of dynamic software updating. J Softw

Evol Process 25(5):535–568
97. Sharma U, Shenoy PJ, Sahu S, Shaikh A (2011) A cost-aware elasticity provisioning system for

the cloud. In: International Conference on Distributed Computing Systems (ICDCS), Minneapolis,
Minnesota, USA, pp 559–570

98. Shen M, Kshemkalyani AD, Hsu TY (2015) Causal consistency for geo-replicated cloud storage
under partial replication. In: International Parallel and Distributed Processing Symposium (IPDPS)
Workshop, Hyderabad, India, pp 509–518

99. Shen Z, Subbiah S, Gu X,Wilkes J (2011) CloudScale: elastic resource scaling for multi-tenant cloud
systems. In: ACM Symposium on Cloud Computing (SOCC), Cascais, Portugal, p 5

100. Simoes R, Kamienski CA (2014) Elasticity management in private and hybrid clouds. In: 7th IEEE
International Conference on Cloud Computing (CLOUD), Anchorage, AK, USA, pp 793–800

101. Singh S, Chana I (2015) QoS-aware autonomic resource management in cloud computing: a system-
atic review. ACM Comput Surv 48(3):42:1–42:46

102. Smith CU (1980) The prediction and evaluation of the performance of software from extended design
specifications. PhD thesis, Department of Computer Science, The University of Texas at Austin, USA

103. Smith CU, Williams LG (2003) Software performance engineering. In: Lavagno L, Martin G, Selic
B (eds) UML for real. Design of embedded real-time systems, chap 16. Springer, Berlin, pp 343–365

104. Solarski M (2004) Dynamic upgrade of distributed software components. PhD thesis, Fakultät IV
Elektronik und Informatik, Technischen Universität Berlin, Berlin, Germany

105. Soltesz S, Pötzl H, FiuczynskiME, Bavier AC, Peterson LL (2007) Container-based operating system
virtualization: a scalable, high-performance alternative to hypervisors. In: European Conference,
Lisbon, Portugal, pp 275–287

123



www.manaraa.com

656 F. D. Muñoz-Escoí, J. M. Bernabéu-Aubán

106. Soules CAN, Appavoo J, Hui K, Wisniewski RW, Silva DD, Ganger GR, Krieger O, StummM, Aus-
landerMA, OstrowskiM, Rosenburg BS, Xenidis J (2003) System support for online reconfiguration.
In: USENIX Annual Technical Conference. San Antonio, Texas, USA, pp 141–154

107. Sridharan S (2012) A performance comparison of hypervisors for cloud computing. Master Thesis
(paper 269), School of Computing, University of North Florida, USA

108. Stonebraker M (1986) The case for shared nothing. IEEE Database Eng Bull 9(1):4–9
109. Sun D, Guimarans D, Fekete A, Gramoli V, Zhu L (2015) Multi-objective optimisation of rolling

upgrade allowing for failures in clouds. In: 34th IEEE Symposium on Reliable Distributed Systems
(SRDS). Montreal, QC, Canada, pp 68–73

110. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. The MIT Press, Cambridge
111. Toosi AN, Calheiros RN, Buyya R (2014) Interconnected cloud computing environments: challenges,

taxonomy, and survey. ACM Comput Surv 47(1):7:1–7:47
112. Vaquero González LM, Rodero-Merino L, Cáceres J, Lindner MA (2009) A break in the clouds:

towards a cloud definition. Comput Commun Rev 39(1):50–55
113. Varrette S,GuzekM,PlugaruV,BesseronX,BouvryP (2013)HPCperformance and energy-efficiency

of Xen, KVMandVMware hypervisors. In: 25th International Symposium onComputer Architecture
and High Performance Computing (SBAC-PAD). Porto de Galinhas, Pernambuco, Brazil, pp 89–96

114. Vasic N, Novakovic DM, Miucin S, Kostic D, Bianchini R (2012) DejaVu: accelerating resource
allocation in virtualized environments. In: 17th nternational Conference on Architectural Support for
Programing Languages and Operating Systems (ASPLOS), London, UK, pp 423–436

115. Vaughan-Nichols SJ (2006)New approach to virtualization is a lightweight. IEEEComput 39(11):12–
14

116. Vogels W (2009) Eventually consistent. Commun ACM 52(1):40–44
117. Wada H, Suzuki J, Yamano Y, Oba K (2011) Evolutionary deployment optimization for service-

oriented clouds. Softw Pract Exp 41(5):469–493
118. Whitaker A, Cox RS, ShawM, Gribble SD (2005) Rethinking the design of virtual machine monitors.

IEEE Comput 38(5):57–62
119. Wishart DMG (1969) A survey of control theory. J R Stat Soc Ser A-G 132(3):293–319
120. Yataghene L, Amziani M, Ioualalen M, Tata S (2014) A queuing model for business processes

elasticity evaluation. In: International Workshop on Advanced Information Systems for Enterprises
(IWAISE), Tunis, Tunisia, pp 22–28

121. Zawirski M, Preguiça N, Duarte S, Bieniusa A, Balegas V, Shapiro M (2015) Write fast, read in the
past: causal consistency for client-side applications. In: 16th International Middleware Conference
(MIDDLEWARE), Vancouver, BC, Canada

122. Zhao J, Trivedi KS, GrottkeM, Alonso J, Wang Y (2014) Ensuring the performance of Apache HTTP
server affected by aging. IEEE Trans Dependable Secure Comput 11(2):130–141

123



www.manaraa.com

Reproduced with permission of
copyright owner. Further

reproduction prohibited without
permission.


	A survey on elasticity management in PaaS systems
	Abstract
	1 Introduction
	2 Background and related work
	3 Elasticity requirements
	4 Elasticity mechanisms
	4.1 Autonomy
	4.2 Scalability
	4.3 Adaptability
	4.3.1 Proactive mechanisms
	4.3.2 Reactive mechanisms

	4.4 SLA-awareness
	4.5 Composability
	4.6 Minimal service disruption in software upgrades
	4.7 Summary

	5 Open problems
	5.1 Challenges
	5.2 Potential solutions
	5.3 Summary

	6 Conclusions
	Acknowledgements
	References




